skip to main content

Search for: All records

Creators/Authors contains: "Apul, Defne"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Future high performance PV devices are expected to be tandem cells consisting of a low bandgap bottom cell and a high bandgap top cell. In this study, we developed a cradle-to-end of use life cycle assessment model to evaluate the environmental impacts, primary energy demand (PED), and energy payback time (EPBT) of four integrated two-terminal tandem solar cells composed of either Si bottom and lead-based perovskite (PK Pb ) top cells (Si/PK Pb ), copper indium gallium selenide (CIGS) and PK Pb (CIGS/PK Pb ), copper zinc tin selenide (CZTS) and PK Pb (CZTS/PK Pb ), or tin-lead based perovskite (PK Sn,Pb ) and PK Pb (PK Sn,Pb /PK Pb ). Environmental impacts from single junction Si solar cells were used as a reference point to interpret the results. We found that the environmental impacts for a 1 m 2 area of a cell were largely determined by the bottom cell impacts and ranged from 50% (CZTS/PK Pb ) to 120% of those of a Si cell. The ITO layer used in Si/PK Pb , CZTS/PK Pb , and PK Sn,Pb /PK Pb is the most impactful after the Si and CIGS absorbers, and contributed up to 70% (in PKmore »Sn,Pb /PK Pb ) of the total impacts for these tandem PVs. Manufacturing a single two-terminal device was found to be a more environmentally friendly option than manufacturing two constituent single-junction cells and can reduce the environmental impacts by 30% due to the exclusion of extra glass, encapsulation, front contact and back contact layers. PED analysis indicated that PK Sn,Pb /PK Pb manufacturing has the least energy-intensive processing, and the EPBTs of Si/PK Pb , CIGS/PK Pb , CZTS/PK Pb , and PK Sn,Pb /PK Pb tandems were found to be ∼13, ∼7, ∼2, and ∼1 months, respectively. On an impacts per kW h of Si basis the environmental impacts of all the devices were much higher (up to ∼10 times). These results can be attributed to the low photoconversion efficiency (PCE) and short lifetime that were assumed. While PK Sn,Pb /PK Pb has higher impacts than Si based on current low PCE (21%) and short lifetime (5 years) assumptions, it can outperform Si if its lifetime and PCE reach 16 years and 30%, respectively. Among the configurations considered, the PK Sn,Pb /PK Pb structure has the potential to be the most environmentally friendly technology.« less