Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 29, 2026
-
To manage water resources and forecast river flows, hydrologists seek to understand how water moves from precipitation, through watersheds, into river channels. However, we lack fundamental information on the spatial distribution and physical controls on global hydrologic processes. This information is needed to provide theoretical support for large-domain model simulations. Here, to address this issue, we present a global, searchable database of 400 research watersheds with published descriptions of dominant hydrologic flow pathways. This knowledge synthesis approach leverages decades of grant funding, fieldwork effort and local expertise. We use the database to test longstanding hypotheses about the roles of climate, biomes and landforms in controlling hydrologic processes. We show that aridity predicts the depth of water flow pathways and that terrain and biomes predict the prevalence of lateral flow pathways. These new data and search capabilities support efficient hypothesis testing to investigate emergent patterns that relate landscape organization to hydrologic function.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Abstract Identifying and quantifying preferential flow (PF) through soil—the rapid movement of water through spatially distinct pathways in the subsurface—is vital to understanding how the hydrologic cycle responds to climate, land cover, and anthropogenic changes. In recent decades, methods have been developed that use measured soil moisture time series to identify PF. Because they allow for continuous monitoring and are relatively easy to implement, these methods have become an important tool for recognizing when, where, and under what conditions PF occurs. The methods seek to identify a pattern or quantification that indicates the occurrence of PF. Most commonly, the chosen signature is either (1) a nonsequential response to infiltrated water, in which soil moisture responses do not occur in order of shallowest to deepest, or (2) a velocity criterion, in which newly infiltrated water is detected at depth earlier than is possible by nonpreferential flow processes. Alternative signatures have also been developed that have certain advantages but are less commonly utilized. Choosing among these possible signatures requires attention to their pertinent characteristics, including susceptibility to errors, possible bias toward false negatives or false positives, reliance on subjective judgments, and possible requirements for additional types of data. We review 77 studies that have applied such methods to highlight important information for readers who want to identify PF from soil moisture data and to inform those who aim to develop new methods or improve existing ones.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Hydrologic signatures are quantitative metrics that describe streamflow statistics and dynamics. Signatures have many applications, including assessing habitat suitability and hydrologic alteration, calibrating and evaluating hydrologic models, defining similarity between watersheds and investigating watershed processes. Increasingly, signatures are being used in large sample studies to guide flow management and modelling at continental scales. Using signatures in studies involving 1000s of watersheds brings new challenges as it becomes impractical to examine signature parameters and behaviour in each watershed. For example, we might wish to check that signatures describing flood event characteristics have correctly identified event periods, that signature values have not been biassed by data errors, or that human and natural influences on signature values have been correctly interpreted. In this commentary, we draw from our collective experience to present case studies where naïve application of signatures fails to correctly identify streamflow dynamics. These include unusual precipitation or flow regimes, data quality issues, and signature use in human-influenced watersheds. We conclude by providing guidance and recommendations on applying signatures in large sample studies.more » « less
-
Abstract Dominant processes in a watershed are those that most strongly control hydrologic function and response. Estimating dominant processes enables hydrologists to design physically realistic streamflow generation models, design management interventions, and understand how climate and landscape features control hydrologic function. A recent approach to estimating dominant processes is through their link to hydrologic signatures, which are metrics that characterize the streamflow timeseries. Previous authors have used results from experimental watersheds to link signature values to underlying processes, but these links have not been tested on large scales. This paper fills that gap by testing signatures in large sample data sets from the U.S., Great Britain, Australia, and Brazil, and in Critical Zone Observatory (CZO) watersheds. We found that most inter‐signature correlations are consistent with process interpretations, that is, signatures that are supposed to represent the same process are correlated, and most signature values are consistent with process knowledge in CZO watersheds. Some exceptions occurred, such as infiltration and saturation excess processes that were often misidentified by signatures. Signature distributions vary by country, emphasizing the importance of regional context in understanding signature‐process links and in classifying signature values as “high” or “low.” Not all signatures were easily transferable from single, small watersheds to large sample studies, showing that visual or process‐based assessment of signatures is important before large‐scale use. We provide a summary table with information on the reliability of each signature for process identification. Overall, our results provide a reference for future studies that seek to use signatures to identify hydrological processes.more » « less
An official website of the United States government

Full Text Available