Abstract Dominant processes in a watershed are those that most strongly control hydrologic function and response. Estimating dominant processes enables hydrologists to design physically realistic streamflow generation models, design management interventions, and understand how climate and landscape features control hydrologic function. A recent approach to estimating dominant processes is through their link to hydrologic signatures, which are metrics that characterize the streamflow timeseries. Previous authors have used results from experimental watersheds to link signature values to underlying processes, but these links have not been tested on large scales. This paper fills that gap by testing signatures in large sample data sets from the U.S., Great Britain, Australia, and Brazil, and in Critical Zone Observatory (CZO) watersheds. We found that most inter‐signature correlations are consistent with process interpretations, that is, signatures that are supposed to represent the same process are correlated, and most signature values are consistent with process knowledge in CZO watersheds. Some exceptions occurred, such as infiltration and saturation excess processes that were often misidentified by signatures. Signature distributions vary by country, emphasizing the importance of regional context in understanding signature‐process links and in classifying signature values as “high” or “low.” Not all signatures were easily transferable from single, small watersheds to large sample studies, showing that visual or process‐based assessment of signatures is important before large‐scale use. We provide a summary table with information on the reliability of each signature for process identification. Overall, our results provide a reference for future studies that seek to use signatures to identify hydrological processes.
more »
« less
When good signatures go bad: Applying hydrologic signatures in large sample studies
Hydrologic signatures are quantitative metrics that describe streamflow statistics and dynamics. Signatures have many applications, including assessing habitat suitability and hydrologic alteration, calibrating and evaluating hydrologic models, defining similarity between watersheds and investigating watershed processes. Increasingly, signatures are being used in large sample studies to guide flow management and modelling at continental scales. Using signatures in studies involving 1000s of watersheds brings new challenges as it becomes impractical to examine signature parameters and behaviour in each watershed. For example, we might wish to check that signatures describing flood event characteristics have correctly identified event periods, that signature values have not been biassed by data errors, or that human and natural influences on signature values have been correctly interpreted. In this commentary, we draw from our collective experience to present case studies where naïve application of signatures fails to correctly identify streamflow dynamics. These include unusual precipitation or flow regimes, data quality issues, and signature use in human-influenced watersheds. We conclude by providing guidance and recommendations on applying signatures in large sample studies.
more »
« less
- Award ID(s):
- 2124923
- PAR ID:
- 10534903
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Hydrological processes
- Volume:
- 37
- Issue:
- 9
- ISSN:
- 0885-6087
- Page Range / eLocation ID:
- e14987
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Hydrologic signatures are quantitative metrics that describe a streamflow time series. Examples include annual maximum flow, baseflow index and recession shape descriptors. In this paper, we use machine learning (ML) to learn encodings that are optimal ML equivalents of hydrologic signatures, and that are derived directly from the data. We compare the learned signatures to classical signatures, interpret their meaning, and use them to build rainfall‐runoff models in otherwise ungauged watersheds. Our model has an encoder–decoder structure. The encoder is a convolutional neural net mapping historical flow and climate data to a low‐dimensional vector encoding, analogous to hydrological signatures. The decoder structure includes stores and fluxes similar to a classical hydrologic model. For each timestep, the decoder uses current climate data, watershed attributes and the encoding to predict coefficients that distribute precipitation between stores and store outflow coefficients. The model is trained end‐to‐end on the U.S. CAMELS watershed data set to minimize streamflow error. We show that learned signatures can extract new information from streamflow series, because using learned signatures as input to the process‐informed model improves prediction accuracy over benchmark configurations that use classical signatures or no signatures. We interpret learned signatures by correlation with classical signatures, and by using sensitivity analysis to assess their impact on modeled store dynamics. Learned signatures are spatially correlated and relate to streamflow dynamics including seasonality, high and low extremes, baseflow and recessions. We conclude that process‐informed ML models and other applications using hydrologic signatures may benefit from replacing expert‐selected signatures with learned signatures.more » « less
-
Post-fire flooding and debris flows are often triggered by increased overland flow resulting from wildfire impacts on soil infiltration capacity and surface roughness. Increasing wildfire activity and intensification of precipitation with climate change make improving understanding of post-fire overland flow a particularly pertinent task. Hydrologic signatures, which are metrics that summarize the hydrologic regime of watersheds using rainfall and runoff time series, can be calculated for large samples of watersheds relatively easily to understand post-fire hydrologic processes. We demonstrate that signatures designed specifically for overland flow reflect changes to overland flow processes with wildfire that align with previous case studies on burned watersheds. For example, signatures suggest increases in infiltration-excess overland flow and decrease in saturation-excess overland flow in the first and second years after wildfire in the majority of watersheds examined. We show that climate, watershed and wildfire attributes can predict either post-fire signatures of overland flow or changes in signature values with wildfire using machine learning. Normalized difference vegetation index (NDVI), air temperature, amount of developed/undeveloped land, soil thickness and clay content were the most used predictors by well-performing machine learning models. Signatures of overland flow provide a streamlined approach for characterizing and understanding post-fire overland flow, which is beneficial for watershed managers who must rapidly assess and mitigate the risk of post-fire hydrologic hazards after wildfire occurs.more » « less
-
In dry summer months, stream baseflow sourced from groundwater is essential to support aquatic ecosystems and anthropogenic water use. Hydrologic signatures, or metrics describing unique features of streamflow timeseries, are useful for quantifying and predicting these valuable baseflow and groundwater storage resources across continental scales. Hydrologic signatures can be predicted based on catchment attributes summarising climate and landscape and can be used to characterise baseflow and groundwater processes that cannot be directly measured. While past watershed‐scale studies suggest that landscape attributes are important controls on baseflow and storage processes, recent regional‐to‐global scale modelling studies have instead found that landscape attributes have weaker relationships with hydrologic signatures of these processes than expected compared to climate attributes. In this study, we quantify two landscape attributes, average geologic age and the proportion of catchment area covered by wetlands. We investigate if incorporating these additional predictors into existing large‐sample attribute datasets strengthens continental‐scale, empirical relationships between landscape attributes and hydrologic signatures. We quantify 14 hydrologic signatures related to baseflow and groundwater processes in catchments across the contiguous United States, evaluate the relationships between the new catchment attributes and hydrologic signatures with correlation analysis and use the new attributes to predict hydrologic signatures with random forest models. We found that the average geologic age of catchments was a highly influential predictor of hydrologic signatures, especially for signatures describing baseflow magnitude in catchments, and had greater importance than existing attributes of the subsurface. In contrast, we found that the proportion of wetlands in catchments had limited influence on our hydrologic signature predictions. We recommend incorporating catchment geologic age into large‐sample catchment datasets to improve predictions of baseflow and storage hydrologic signatures and processes across continental scales.more » « less
-
Abstract The Logan River watershed, located in Northern Utah, USA, consists of a relatively pristine, mountainous area that drains to a lower elevation, valley area influenced by both urban development and agriculture. The Logan River Observatory has been collecting aquatic (streamflow and water quality) and climate data throughout the Logan River watershed since 2014. While streamflow measurements are commonly made at the outlets of research watersheds, the Logan River watershed consists of diverse hydrologic, topographic, and geologic settings that require a detailed understanding of streamflow variability over time at many locations. Here, we illustrate: (a) the importance of collecting streamflow time series throughout complex watersheds, and (b) how simple flow balances can provide much needed hydrologic insight into the locations and timing of gains and losses over reaches to guide future investigations.more » « less
An official website of the United States government

