- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
31
- Author / Contributor
- Filter by Author / Creator
-
-
Aramayona, Javier (4)
-
Leininger, Christopher J. (2)
-
Tao, Jing (2)
-
Bux, Kai-Uwe (1)
-
Domat, George (1)
-
Ghaswala, Tyrone (1)
-
Kent, Autumn (1)
-
Kim, Heejoung (1)
-
McLeay, Alan (1)
-
Skipper, Rachel (1)
-
Vlamis, Nicholas G (1)
-
Winarski, Rebecca (1)
-
Wu, Xiaolei (1)
-
de_Pool, Rodrigo (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We show that continuous epimorphisms between a class of subgroups of mapping class groups of orientable infinite-genus 2-manifolds with no planar ends are always induced by homeomorphisms. This class of subgroups includes the pure mapping class group, the closure of the compactly supported mapping classes, and the full mapping class group in the case that the underlying manifold has a finite number of ends or is perfectly self-similar. As a corollary, these groups are Hopfian topological groups.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Aramayona, Javier; Bux, Kai-Uwe; Kim, Heejoung; Leininger, Christopher J. (, Mathematische Annalen)Abstract For every$$n\ge 2$$ , thesurface Houghton group$${\mathcal {B}}_n$$ is defined as the asymptotically rigid mapping class group of a surface with exactlynends, all of them non-planar. The groups$${\mathcal {B}}_n$$ are analogous to, and in fact contain, the braided Houghton groups. These groups also arise naturally in topology: every monodromy homeomorphism of a fibered component of a depth-1 foliation of closed 3-manifold is conjugate into some$${\mathcal {B}}_n$$ . As countable mapping class groups of infinite type surfaces, the groups$$\mathcal {B}_n$$ lie somewhere between classical mapping class groups and big mapping class groups. We initiate the study of surface Houghton groups proving, among other things, that$$\mathcal {B}_n$$ is of type$$\text {F}_{n-1}$$ , but not of type$$\text {FP}_{n}$$ , analogous to the braided Houghton groups.more » « less
-
Aramayona, Javier; Ghaswala, Tyrone; Kent, Autumn; McLeay, Alan; Tao, Jing; Winarski, Rebecca (, Groups, Geometry, and Dynamics)
An official website of the United States government
