skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Archer, M_O"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT This white paper is highly topical as it relates to the upcoming solar wind magnetosphere ionosphere link explorer (SMILE) mission: SMILE is a joint mission between the European Space Agency and the Chinese Academy of Sciences and it aims to build a more complete understanding of the Sun–Earth connection by measuring the solar wind and its dynamic interaction with the magnetosphere. It is a fully funded mission with a projected launch in 2025. This paper outlines a plan for action for SMILE’s first Northern hemisphere winter campaign using ground-based instruments. We outline open questions and which data and techniques can be employed to answer them. The science themes we discuss are: (i) Earth’s magnetosheath, magnetopause, and magnetic cusp impact on the ionospheric cusp region; (ii) defining the relationship between auroral processes, solar wind, and magnetospheric drivers; (iii) understanding the interhemispheric properties of the Earth’s magnetosphere–ionosphere system. We discuss open questions (different to the mission goals) which may be answered using existing ground-based instrumentation together with SMILE data to leverage the maximum scientific return of the mission during the first winter after launch. This paper acts as a resource for planning, and a call to collaborative action for the scientific community. 
    more » « less
  2. Abstract Both ground based magnetometers and ionospheric radars at Earth have frequently detected Ultra Low Frequency (ULF) fluctuations at discrete frequencies extending below one mHz‐range. Many dayside solar wind drivers have been convincingly demonstrated as driver mechanisms. In this paper we investigate and propose an additional, nightside generation mechanism of a low frequency magnetic field fluctuation. We propose that the Moon may excite a magnetic field perturbation of the order of 1 nT at discrete frequencies when it travels through the Earth's magnetotail 4–5 days every month. Our theoretical prediction is supported by a case study of ARTEMIS magnetic field measurements at the lunar orbit in the Earth's magnetotail. ARTEMIS detects statistically significant peaks in magnetic field fluctuation power at frequencies of 0.37–0.47 mHz that are not present in the solar wind. 
    more » « less
  3. Abstract Surface waves on Earth's magnetopause have a controlling effect upon global magnetospheric dynamics. Since spacecraft provide sparse in situ observation points, remote sensing these modes using ground‐based instruments in the polar regions is desirable. However, many open conceptual questions on the expected signatures remain. Therefore, we provide predictions of key qualitative features expected in auroral, ionospheric, and ground magnetic observations through both magnetohydrodynamic theory and a global coupled magnetosphere‐ionosphere simulation of a magnetopause surface eigenmode. These show monochromatic oscillatory field‐aligned currents (FACs), due to both the surface mode and its non‐resonant Alfvén coupling, are present throughout the magnetosphere. The currents peak in amplitude at the equatorward edge of the magnetopause boundary layer, not the open‐closed boundary as previously thought. They also exhibit slow poleward phase motion rather than being purely evanescent. We suggest the upward FAC perturbations may result in periodic auroral brightenings. In the ionosphere, convection vortices circulate the poleward moving FAC structures. Finally, surface mode signals are predicted in the ground magnetic field, with ionospheric Hall currents rotating perturbations by approximately (but not exactly) 90° compared to the magnetosphere. Thus typical dayside magnetopause surface modes should be strongest in the East‐West ground magnetic field component. Overall, all ground‐based signatures of the magnetopause surface mode are predicted to have the same frequency acrossL‐shells, amplitudes that maximize near the magnetopause's equatorward edge, and larger latitudinal scales than for field line resonance. Implications in terms of ionospheric Joule heating and geomagnetically induced currents are discussed. 
    more » « less