skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Could a Low‐Frequency Perturbation in the Earth's Magnetotail Be Generated by the Lunar Wake?
Abstract Both ground based magnetometers and ionospheric radars at Earth have frequently detected Ultra Low Frequency (ULF) fluctuations at discrete frequencies extending below one mHz‐range. Many dayside solar wind drivers have been convincingly demonstrated as driver mechanisms. In this paper we investigate and propose an additional, nightside generation mechanism of a low frequency magnetic field fluctuation. We propose that the Moon may excite a magnetic field perturbation of the order of 1 nT at discrete frequencies when it travels through the Earth's magnetotail 4–5 days every month. Our theoretical prediction is supported by a case study of ARTEMIS magnetic field measurements at the lunar orbit in the Earth's magnetotail. ARTEMIS detects statistically significant peaks in magnetic field fluctuation power at frequencies of 0.37–0.47 mHz that are not present in the solar wind.  more » « less
Award ID(s):
2307204 2027210
PAR ID:
10557127
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
22
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Aims. An interplanetary coronal mass ejection (ICME) event was observed by the Solar Orbiter at 0.8 AU on 2020 April 19 and by Wind at 1 AU on 2020 April 20. Futhermore, an interplanetary shock wave was driven in front of the ICME. Here, we focus on the transmission of the magnetic fluctuations across the shock and we analyze the characteristic wave modes of solar wind turbulence in the vicinity of the shock observed by both spacecraft. Methods. The observed ICME event is characterized by a magnetic helicity-based technique. The ICME-driven shock normal was determined by magnetic coplanarity method for the Solar Orbiter and using a mixed plasma and field approach for Wind. The power spectra of magnetic field fluctuations were generated by applying both a fast Fourier transform and Morlet wavelet analysis. To understand the nature of waves observed near the shock, we used the normalized magnetic helicity as a diagnostic parameter. The wavelet-reconstructed magnetic field fluctuation hodograms were used to further study the polarization properties of waves. Results. We find that the ICME-driven shock observed by Solar Orbiter and Wind is a fast, forward oblique shock with a more perpendicular shock angle at the Wind position. After the shock crossing, the magnetic field fluctuation power increases. Most of the magnetic field fluctuation power resides in the transverse fluctuations. In the vicinity of the shock, both spacecraft observe right-hand polarized waves in the spacecraft frame. The upstream wave signatures fall within a relatively broad and low frequency band, which might be attributed to low frequency MHD waves excited by the streaming particles. For the downstream magnetic wave activity, we find oblique kinetic Alfvén waves with frequencies near the proton cyclotron frequency in the spacecraft frame. The frequency of the downstream waves increases by a factor of ∼7–10 due to the shock compression and the Doppler effect. 
    more » « less
  2. Abstract Disturbances in ionospheric Total Electron Content (dTEC) with frequencies of 1–100 mHz can be driven from above by processes in the magnetosphere and below by processes on the Earth's surface and lower atmosphere. Past studies showed the potential of dTEC as a diagnostic of magnetospheric Ultra Low Frequency (ULF) wave activity and demonstrated that ULF dTEC can impact space weather by, for example, changing ionospheric conductance. However, most past work has focused on single event studies, lacked magnetospheric context, or used sampling rates too low to capture most ULF waves. Here, we perform a statistical study using Time History of Events and Macrsoscale Interactions during Substorms (THEMIS) satellite conjunctions with a ground‐based magnetometer and Global Navigation Satellite System (GNSS) receiver at 65° magnetic latitude. We find that magnetospheric ULF waves generate dTEC variations across the broad range of frequencies examined in this study (2–50 mHz), and that ULF dTEC wave power is correlated with Kp, AE, solar wind speed, and magnetic field wave power observed in the magnetosphere and on the ground. We further find that magnetospheric ULF waves generate dTEC amplitudes up to TECU ( background), with the largest amplitudes occurring during geomagnetically active conditions, at frequencies below 7 mHz, and at local times near midnight. We finally discuss the implications of our results for magnetosphere‐ionosphere coupling and remote sensing techniques related to ULF waves. 
    more » « less
  3. Abstract Observations show that magnetic pulsations with frequencies around 1 mHz are frequently detected simultaneously at different latitudes on the ground, in the inner magnetosphere, and in the solar wind. The coupling between oscillations in the dynamic pressure or magnetic field carried by the solar wind and the ultra‐low frequency (ULF) waves detected on the ground at high latitudes has been suggested in several studies. We present results from a numerical study of ultra‐low‐frequency waves detected by the ground magnetometers at middle latitudes during substorm. We investigate the hypothesis that these waves are generated by the ionospheric feedback instability driven by the large‐scale electric field in the ionosphere. This field is associated with the surface waves propagating along the ambient magnetic field on a strong perpendicular gradient in the plasma density occurring in the equatorial magnetosphere. The gradient in the plasma density is associated with the plasmapause. The plasmapause moves to the middle latitude when the plasmasphere erodes during substorm. The energy from the external driver can be coupled to the large‐scale surface Alfvén waves traveling along the field lines into the ionosphere and generating small‐scale intense ULF waves and field‐aligned currents at middle latitudes. The simulations of the two‐fluid magnetohydrodynamics model confirm this scenario, and the numerical results show a good quantitative agreement with the observations. 
    more » « less
  4. Abstract Solar wind drives magnetospheric dynamics through coupling with the geospace system at the magnetopause. While upstream fluctuations correlate with geomagnetic activity, their impact on the magnetopause energy transfer is an open question. In this study, we examine three‐dimensional global magnetospheric simulations using the Geospace configuration of the Space Weather Modeling Framework. We examine the effects of solar wind fluctuations during a substorm event by running the model with four different driving conditions that vary in fluctuation frequency spectrum. We demonstrate that upstream fluctuations intensify the energy exchange at the magnetopause increasing both energy flux into and out of the system. The increased energy input is reflected in ground magnetic indices. Moreover, the fluctuations impact the magnetopause dynamics by regulating the energy exchange between the polar caps and lobes and energy transport within the magnetotail neutral sheet. 
    more » « less
  5. Abstract Earth's magnetotail is filled with solar wind and ionospheric electrons, whose initial energies are significantly lower than the typical energies (temperatures) of plasmasheet electrons. One of the most common mechanisms responsible for heating of solar wind and ionospheric electrons in Earth's magnetotail is adiabatic heating caused by earthward convection of these electrons from the deep tail (i.e., from the region of a weak magnetic field) toward the region of stronger magnetic fields closer to Earth. This heating is moderated by electron losses into the ionosphere due to local wave scattering. In this study, we compare electron spectra from simultaneous observations of The Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft at different radial distances with spectra obtained from a simple model that includes adiabatic heating and losses. Our comparison shows that the model heating significantly overestimates the increase in energetic ( keV) electron fluxes, indicating that losses are essential for accurate modeling of the observed spectra. The required electron losses are similar to or even greater than the losses in the strong diffusion limit (when the loss cone is full). The latter can be interpreted as loss cone widening by field‐aligned electron acceleration. 
    more » « less