skip to main content

Search for: All records

Creators/Authors contains: "Arida, Evy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The biota of Sulawesi is noted for its high degree of endemism and for its substantial levels of in situ biological diversification. While the island’s long period of isolation and dynamic tectonic history have been implicated as drivers of the regional diversification, this has rarely been tested in the context of an explicit geological framework. Here, we provide a tectonically informed biogeographical framework that we use to explore the diversification history of Sulawesi flying lizards (the Draco lineatus Group), a radiation that is endemic to Sulawesi and its surrounding islands. We employ a framework for inferring cryptic speciation that involves phylogeographic and genetic clustering analyses as a means of identifying potential species followed by population demographic assessment of divergence-timing and rates of bi-directional migration as means of confirming lineage independence (and thus species status). Using this approach, phylogenetic and population genetic analyses of mitochondrial sequence data obtained for 613 samples, a 50-SNP data set for 370 samples, and a 1249-locus exon-capture data set for 106 samples indicate that the current taxonomy substantially understates the true number of Sulawesi Draco species, that both cryptic and arrested speciations have taken place, and that ancient hybridization confounds phylogenetic analyses that do notmore »explicitly account for reticulation. The Draco lineatus Group appears to comprise 15 species—9 on Sulawesi proper and 6 on peripheral islands. The common ancestor of this group colonized Sulawesi ~11 Ma when proto-Sulawesi was likely composed of two ancestral islands, and began to radiate ~6 Ma as new islands formed and were colonized via overwater dispersal. The enlargement and amalgamation of many of these proto-islands into modern Sulawesi, especially during the past 3 Ma, set in motion dynamic species interactions as once-isolated lineages came into secondary contact, some of which resulted in lineage merger, and others surviving to the present. [Genomics; Indonesia; introgression; mitochondria; phylogenetics; phylogeography; population genetics; reptiles.]

    « less
  2. Abstract

    Identifying hotspots of biological diversity is a key step in conservation prioritisation. Melanesia—centred on the vast island of New Guinea—is increasingly recognised for its exceptionally species-rich and endemic biota. Here we show that Melanesia has the world’s most diverse insular amphibian fauna, with over 7% of recognised global frog species in less than 0.7% of the world’s land area, and over 97% of species endemic. We further estimate that nearly 200 additional candidate species have been discovered but remain unnamed, pointing to a total fauna in excess of 700 species. Nearly 60% of the Melanesian frog fauna is in a lineage of direct-developing microhylids characterised by smaller distributions than co-occurring frog families, suggesting lineage-specific high beta diversity is a key driver of Melanesian anuran megadiversity. A comprehensive conservation status assessment further highlights geographic concentrations of recently described range-restricted threatened taxa that warrant urgent conservation actions. Nonetheless, by world standards, the Melanesian frog fauna is relatively intact, with 6% of assessed species listed as threatened and no documented extinctions; and thus it provides an unparalleled opportunity to understand and conserve a megadiverse and relatively intact insular biota.

  3. Field biology is an area of research that involves working directly with living organisms in situ through a practice known as “fieldwork.” Conducting fieldwork often requires complex logistical planning within multiregional or multinational teams, interacting with local communities at field sites, and collaborative research led by one or a few of the core team members. However, existing power imbalances stemming from geopolitical history, discrimination, and professional position, among other factors, perpetuate inequities when conducting these research endeavors. After reflecting on our own research programs, we propose four general principles to guide equitable, inclusive, ethical, and safe practices in field biology: be collaborative, be respectful, be legal, and be safe. Although many biologists already structure their field programs around these principles or similar values, executing equitable research practices can prove challenging and requires careful consideration, especially by those in positions with relatively greater privilege. Based on experiences and input from a diverse group of global collaborators, we provide suggestions for action-oriented approaches to make field biology more equitable, with particular attention to how those with greater privilege can contribute. While we acknowledge that not all suggestions will be applicable to every institution or program, we hope that they will generate discussionsmore »and provide a baseline for training in proactive, equitable fieldwork practices.« less
  4. Abstract

    The Lesser Sundas Archipelago is comprised of two parallel chains of islands that extend between the Asian continental shelf (Sundaland) and Australo‐Papuan continental shelf (Sahul). These islands have served as stepping stones for taxa dispersing between the Asian and Australo‐Papuan biogeographical realms. While the oceanic barriers have prevented many species from colonizing the archipelago, a number of terrestrial vertebrate species have colonized the islands either by rafting/swimming or by human introduction. Here, we examine phylogeographic structure within the Lesser Sundas for three snake, two lizard and two frog species that each has a Sunda Shelf origin. These species are suspected to have recently colonized the archipelago, though all have inhabited the Lesser Sundas for over 100 years. We sequenced mtDNA from 231 samples to test whether there is sufficiently deep genetic structure within any of these taxa to reject human‐mediated introduction. Additionally, we tested for genetic signatures of population expansion consistent with recent introduction and estimated the ages of Lesser Sundas clades, if any exist. Our results show little to no genetic structure between populations on different islands in five species and moderate structure in two species. Nucleotide diversity is low for all species, and the ages of the mostmore »recent common ancestor for species with monophyletic Lesser Sundas lineages date to the Holocene or late Pleistocene. These results support the hypothesis that these species entered the archipelago relatively recently and either naturally colonized or were introduced by humans to most of the larger islands in the archipelago within a short time span.

    « less
  5. Abstract Aim

    The Lesser Sunda Islands are situated between the Sunda and Sahul Shelves, with a linear arrangement that has functioned as a two‐way filter for taxa dispersing between the Asian and Australo‐Papuan biogeographical realms. Distributional patterns of many terrestrial vertebrates suggest a stepping‐stone model of island colonization. Here we investigate the timing and sequence of island colonization in Asian‐origin fanged frogs from the volcanic Sunda Arc islands with the goal of testing the stepping‐stone model of island colonization.

    Location

    The Indonesian islands of Java, Lombok, Sumbawa, Flores and Lembata.

    Taxon

    Limnonectes dammermaniandL. kadarsani(Family: Dicroglossidae)

    Methods

    MitochondrialDNAwas sequenced from 153 frogs to identify major lineages and to select samples for an exon‐capture experiment. We designed probes to capture sequence data from 974 exonic loci (1,235,981 bp) from 48 frogs including the outgroup species,L. microdiscus. The resulting data were analysed using phylogenetic, population genetic and biogeographical model testing methods.

    Results

    The mtDNAphylogeny findsL. kadarsaniparaphyletic with respect toL. dammermani, with a pectinate topology consistent with the stepping‐stone model. Phylogenomic analyses of 974 exons recovered the two species as monophyletic sister taxa that diverged ~7.6 Ma with no detectable contemporary gene flow, suggesting introgression of theL. dammermanimitochondrion intoL. kadarsanion Lombok resulting from an isolated ancient hybridization event ~4 Ma.more »WithinL. kadarsani,the Lombok lineage diverged first while the Sumbawa and Lembata lineages are nested within a Flores assemblage composed of two parapatrically distributed lineages meeting in central Flores. Biogeographical model comparison found strict stepping‐stone dispersal to be less likely than models involving leap‐frog dispersal events.

    Main conclusions

    These results suggest that the currently accepted stepping‐stone model of island colonization might not best explain the current patterns of diversity in the archipelago. The high degree of genetic structure, large divergence times, and absent or low levels of migration between lineages suggests thatL. kadarsanirepresents five distinct species.

    « less