skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ashton, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2026
  2. Bereavement—the loss of a loved one through death—is a common and consequential life course experience. Although bereavement, and the topic of death and dying more broadly, has remained on the margins of sociology, sociological research on bereavement has flourished in the wake of contemporary mortality crises. This review synthesizes the new sociology of bereavement. To contextualize contemporary advancements, we first describe the earlier dominance of psychopathology perspectives. We then review recent sociological contributions, which recognize the structural systems that underpin bereavement and shape its wide-ranging and long-lasting consequences for individuals, families, and communities. We emphasize how bereavement experiences provide a microcosm for understanding social inequalities, and how a life course perspective can provide an integrative framework for a comprehensive sociology of bereavement. We conclude by identifying promising areas for future conceptual and methodological advancements in this emerging field. 
    more » « less
    Free, publicly-accessible full text available July 30, 2026
  3. Heart valve disease (HVD), a significant cardiovascular complication, is one of the leading global causes of morbidity and mortality. Treatment for HVD often involves medical devices such as bioprosthetic valves. However, the design and optimization of these devices require a thorough understanding of their biomechanical and hemodynamic interactions with patient-specific anatomical structures. Parametric procedural geometry has become a powerful tool in enhancing the efficiency and accuracy of design optimization for such devices, allowing researchers to systematically explore a wide range of possible configurations. In this work, we present a robust framework for parametric and procedural modeling of stented bioprosthetic heart valves and patient-specific aortic geometries. The framework employs non-uniform rational B-splines (NURBS)-based geometric parameterization, enabling precise control over key anatomical and design variables. By enabling a modular and expandable workflow, the framework supports iterative optimization of valve designs to achieve improved hemodynamic performance and durability. We demonstrate its applicability through simulations on bioprosthetic aortic valves, highlighting the impact of geometric parameters on valve function and their potential for personalized device design. By coupling parametric geometry with computational tools, this framework offers researchers and engineers a streamlined pathway toward innovative and patient-specific cardiovascular solutions. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  4. Variable operation causes severe degradation of Ni, Fe, and Co catalysts in liquid alkaline water electrolysis. This work reveals insights into catalyst transformations induced by reverse currents and offers guidelines to improve stability testing. 
    more » « less
    Free, publicly-accessible full text available July 15, 2026
  5. Cardiovascular disease (CVD) remains one of the leading causes of mortality worldwide. Computational medicine and digital twins hold promise in mitigating the impact and prevalence of CVD. Recent advances in image-based computational methods have enabled the quantification of functional and biologically important metrics that would otherwise be difficult to obtain from the standard of care. However, significant challenges remain due to the manual/semi-automated nature of the processes and the domain expertise required to perform them. This paper addresses these challenges by proposing a novel framework that builds on our recently developed direct point cloud-to-CFD approach using immersogeometric analysis. The proposed method leverages advanced auto-segmentation techniques to extract medically relevant geometries as point clouds, which are then directly used for CFD simulations. The framework is validated using benchmark flow problems with analytical and computational solutions and is subsequently applied to patient-specific images to demonstrate its capabilities. The results highlight the method's ability to facilitate rapid CFD simulations directly on point clouds derived from patient scans, underscoring its potential to accelerate the image-to-simulation pipeline and enable the tractability of cardiovascular digital twins. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  6. Point cloud representations of three-dimensional objects have remained indispensable across a diverse array of applications, given their ability to represent complex real-world geometry with just a set of points. The high fidelity and versatility of point clouds have been utilized in directly performing numerical analysis for engineering applications, bypassing the labor-intensive and time-consuming tasks of creating analysis-suitable CAD models. However, point clouds exhibit various levels of quality, often containing defects such as holes, noise, and sparse regions, leading to sub-optimal geometry representation that can impact the stability and accuracy of any analysis study. This paper aims to overcome such challenges by proposing a novel method that expands upon our recently developed direct point cloud-to-CFD approach based on immersogeometric analysis. The proposed method features a mesh-driven resampling technique to fill any unintended gaps and regularize the point cloud, making it suitable for CFD analysis. Additionally, ghost penalty stabilization is employed for incompressible flow to improve the conditioning and stability compromised by the small cut elements in immersed methods. The developed method is validated against standard benchmark geometries and real-world point clouds obtained in-house with photogrammetry. Results demonstrate the proposed framework’s robustness in facilitating CFD simulations directly on point clouds of varying quality, underscoring its potential for practical applications in analyzing real-world structures. 
    more » « less
  7. Free, publicly-accessible full text available April 11, 2026
  8. na (Ed.)
    We build on previous work which explained the origin of myriad gullies and incised channels on the dry, sandy uplands of northern Lower Michigan by invoking widespread permafrost. Indicators of permafrost (ice-wedge casts and patterned ground) are known from many sites across the region. Our study area, within an extensive reentrant of the retreating Laurentide Ice Sheet, had been particularly well positioned, geographically, for permafrost. Our goal was to characterize the geomorphic characteristics of the gullies on 72 large ridges, to address the hypothesis that they had formed in association with permafrost. Across the study area, thousands of dry, narrow channels and gullies occur in dense networks, typically with channels aligned directly downslope, in parallel drainage patterns. Most of the gullies exhibit only a minimal amount of incision (ca. 2–3 m), a nearly straight longitudinal profile, and lack a clear depositional fan at their mouth. Even where small fans are present, they are subtle and exhibit little down-fan textural sorting, as would be present in larger, more mature fluvial systems. Gully morphologies did not exhibit strong morphological differences as a function of aspect, as we would have expected for an erosional, periglacial system forming on fairly steep slopes. Nonetheless, in these sandy/gravelly sediments, we could find no other scenario that would have allowed for runoff and gully formation, except ice-rich permafrost that limited infiltration and promoted saturation of the active layer, and eventually, runoff. We conclude that the gullies formed via thermo-erosion into ice-rich permafrost, involving mostly fluvial processes but also some slope failure. Even though thermo-erosion can rapidly form deep gullies, our study area has mainly weak gully forms, perhaps because: (1) permafrost existed here only briefly, (2) the landscape was so cold and the permafrost so ice-rich that runoff was rare, (3) the permafrost on the sandy slopes remained somewhat permeable, limiting runoff, and/or (4) the paleoclimate was so dry that little water was available for sediment transport. We could find no evidence that the gullies developed within preexisting polygonal networks, as is happening today in polar regions under a warming climate. Thus, our study has implications for areas of the Arctic and Antarctic that are, today, experiencing rapid hydrological changes. 
    more » « less