Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Background: Genetic variation provides a foundation for understanding evolution. With the rise of artificial intelligence, machine learning has emerged as a powerful tool for identifying genomic footprints of evolutionary processes through simulation-based predictive modeling. However, existing approaches require prior knowledge of the factors shaping genetic variation, whereas uncovering anomalous genomic regions regardless of their causes remains an equally important and complementary endeavor. Methods: To address this problem, we introduce ANDES (ANomaly DEtection using Summary statistics), a suite of algorithms that apply statistical techniques to extract features for unsupervised anomaly detection. A key innovation of ANDES is its ability to account for autocovariation due to linkage disequilibrium by fitting curves to contiguous windows and computing their first and second derivatives, thereby capturing the “velocity” and “acceleration” of genetic variation. These features are then used to train models that flag biologically significant or artifactual regions. Results: Application to human genomic data demonstrates that ANDES successfully detects anomalous regions that colocalize with genes under positive or balancing selection. Moreover, these analyses reveal a non-uniform distribution of anomalies, which are enriched in specific autosomes, intergenic regions, introns, and regions with low GC content, repetitive sequences, and poor mappability. Conclusions: ANDES thus offers a novel, model-agnostic framework for uncovering anomalous genomic regions in both model and non-model organisms.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Abstract Understanding the genetic basis of phenotypic variation is fundamental to biology. Here we introduce GAP, a novel machine learning framework for predicting binary phenotypes from gaps in multi-species sequence alignments. GAP employs a neural network to predict the presence or absence of phenotypes solely from alignment gaps, contrasting with existing tools that require additional and often inaccessible input data. GAP can be applied to three distinct problems: predicting phenotypes in species from known associated genomic regions, pinpointing positions within such regions that are important for predicting phenotypes, and extracting sets of candidate regions associated with phenotypes. We showcase the utility of GAP by exploiting the well-known association between the L-gulonolactone oxidase (Gulo) gene and vitamin C synthesis, demonstrating its perfect prediction accuracy in 34 vertebrates. This exceptional performance also applies more generally, with GAP achieving high accuracy and power on a large simulated dataset. Moreover, predictions of vitamin C synthesis in species with unknown status mirror their phylogenetic relationships, and positions with high predictive importance are consistent with those identified by previous studies. Last, a genome-wide application of GAP identifies many additional genes that may be associated with vitamin C synthesis, and analysis of these candidates uncovers functional enrichment for immunity, a widely recognized role of vitamin C. Hence, GAP represents a simple yet useful tool for predicting genotype–phenotype associations and addressing diverse evolutionary questions from data available in a broad range of study systems.more » « less
-
Abstract Just exactly which tree(s) should we assume when testing evolutionary hypotheses? This question has plagued comparative biologists for decades. Though all phylogenetic comparative methods require input trees, we seldom know with certainty whether even a perfectly estimated tree (if this is possible in practice) is appropriate for our studied traits. Yet, we also know that phylogenetic conflict is ubiquitous in modern comparative biology, and we are still learning about its dangers when testing evolutionary hypotheses. Here, we investigate the consequences of tree-trait mismatch for phylogenetic regression in the presence of gene tree–species tree conflict. Our simulation experiments reveal excessively high false positive rates for mismatched models with both small and large trees, simple and complex traits, and known and estimated phylogenies. In some cases, we find evidence of a directionality of error: assuming a species tree for traits that evolved according to a gene tree sometimes fares worse than the opposite. We also explored the impacts of tree choice using an expansive, cross-species gene expression dataset as an arguably “best-case” scenario in which one may have a better chance of matching tree with trait. Offering a potential path forward, we found promise in the application of a robust estimator as a potential, albeit imperfect, solution to some issues raised by tree mismatch. Collectively, our results emphasize the importance of careful study design for comparative methods, highlighting the need to fully appreciate the role of accurate and thoughtful phylogenetic modeling.more » « less
-
Abstract MotivationGene deletion is traditionally thought of as a nonadaptive process that removes functional redundancy from genomes, such that it generally receives less attention than duplication in evolutionary turnover studies. Yet, mounting evidence suggests that deletion may promote adaptation via the “less-is-more” evolutionary hypothesis, as it often targets genes harboring unique sequences, expression profiles, and molecular functions. Hence, predicting the relative prevalence of redundant and unique functions among genes targeted by deletion, as well as the parameters underlying their evolution, can shed light on the role of gene deletion in adaptation. ResultsHere, we present CLOUDe, a suite of machine learning methods for predicting evolutionary targets of gene deletion events from expression data. Specifically, CLOUDe models expression evolution as an Ornstein–Uhlenbeck process, and uses multi-layer neural network, extreme gradient boosting, random forest, and support vector machine architectures to predict whether deleted genes are “redundant” or “unique”, as well as several parameters underlying their evolution. We show that CLOUDe boasts high power and accuracy in differentiating between classes, and high accuracy and precision in estimating evolutionary parameters, with optimal performance achieved by its neural network architecture. Application of CLOUDe to empirical data from Drosophila suggests that deletion primarily targets genes with unique functions, with further analysis showing these functions to be enriched for protein deubiquitination. Thus, CLOUDe represents a key advance in learning about the role of gene deletion in functional evolution and adaptation. Availability and implementationCLOUDe is freely available on GitHub (https://github.com/anddssan/CLOUDe).more » « less
-
Abstract Modern comparative biology owes much to phylogenetic regression. At its conception, this technique sparked a revolution that armed biologists with phylogenetic comparative methods (PCMs) for disentangling evolutionary correlations from those arising from hierarchical phylogenetic relationships. Over the past few decades, the phylogenetic regression framework has become a paradigm of modern comparative biology that has been widely embraced as a remedy for shared ancestry. However, recent evidence has shown doubt over the efficacy of phylogenetic regression, and PCMs more generally, with the suggestion that many of these methods fail to provide an adequate defense against unreplicated evolution—the primary justification for using them in the first place. Importantly, some of the most compelling examples of biological innovation in nature result from abrupt lineage-specific evolutionary shifts, which current regression models are largely ill equipped to deal with. Here we explore a solution to this problem by applying robust linear regression to comparative trait data. We formally introduce robust phylogenetic regression to the PCM toolkit with linear estimators that are less sensitive to model violations than the standard least-squares estimator, while still retaining high power to detect true trait associations. Our analyses also highlight an ingenuity of the original algorithm for phylogenetic regression based on independent contrasts, whereby robust estimators are particularly effective. Collectively, we find that robust estimators hold promise for improving tests of trait associations and offer a path forward in scenarios where classical approaches may fail. Our study joins recent arguments for increased vigilance against unreplicated evolution and a better understanding of evolutionary model performance in challenging—yet biologically important—settings.more » « less
-
Yi, Soojin (Ed.)Abstract Predicting gene expression divergence is integral to understanding the emergence of new biological functions and associated traits. Whereas several sophisticated methods have been developed for this task, their applications are either limited to duplicate genes or require expression data from more than two species. Thus, here we present PredIcting eXpression dIvergence (PiXi), the first machine learning framework for predicting gene expression divergence between single-copy orthologs in two species. PiXi models gene expression evolution as an Ornstein-Uhlenbeck process, and overlays this model with multi-layer neural network (NN), random forest, and support vector machine architectures for making predictions. It outputs the predicted class “conserved” or “diverged” for each pair of orthologs, as well as their predicted expression optima in the two species. We show that PiXi has high power and accuracy in predicting gene expression divergence between single-copy orthologs, as well as high accuracy and precision in estimating their expression optima in the two species, across a wide range of evolutionary scenarios, with the globally best performance achieved by a multi-layer NN. Moreover, application of our best-performing PiXi predictor to empirical gene expression data from single-copy orthologs residing at different loci in two species of Drosophila reveals that approximately 23% underwent expression divergence after positional relocation. Further analysis shows that several of these “diverged” genes are involved in the electron transport chain of the mitochondrial membrane, suggesting that new chromatin environments may impact energy production in Drosophila. Thus, by providing a toolkit for predicting gene expression divergence between single-copy orthologs in two species, PiXi can shed light on the origins of novel phenotypes across diverse biological processes and study systems.more » « less
-
Rebekah, Rogers (Ed.)Abstract Learning about the roles that duplicate genes play in the origins of novel phenotypes requires an understanding of how their functions evolve. A previous method for achieving this goal, CDROM, employs gene expression distances as proxies for functional divergence and then classifies the evolutionary mechanisms retaining duplicate genes from comparisons of these distances in a decision tree framework. However, CDROM does not account for stochastic shifts in gene expression or leverage advances in contemporary statistical learning for performing classification, nor is it capable of predicting the parameters driving duplicate gene evolution. Thus, here we develop CLOUD, a multi-layer neural network built on a model of gene expression evolution that can both classify duplicate gene retention mechanisms and predict their underlying evolutionary parameters. We show that not only is the CLOUD classifier substantially more powerful and accurate than CDROM, but that it also yields accurate parameter predictions, enabling a better understanding of the specific forces driving the evolution and long-term retention of duplicate genes. Further, application of the CLOUD classifier and predictor to empirical data from Drosophila recapitulates many previous findings about gene duplication in this lineage, showing that new functions often emerge rapidly and asymmetrically in younger duplicate gene copies, and that functional divergence is driven by strong natural selection. Hence, CLOUD represents a major advancement in classifying retention mechanisms and predicting evolutionary parameters of duplicate genes, thereby highlighting the utility of incorporating sophisticated statistical learning techniques to address long-standing questions about evolution after gene duplication.more » « less
An official website of the United States government
