Within-species trait variation may be the result of genetic variation, environmental variation, or measurement error, for example. In phylogenetic comparative studies, failing to account for within-species variation has many adverse effects, such as increased error in testing hypotheses about evolutionary correlations, biased estimates of evolutionary rates, and inaccurate inference of the mode of evolution. These adverse effects were demonstrated in studies that considered a tree-like underlying phylogeny. Comparative methods on phylogenetic networks are still in their infancy. The impact of within-species variation on network-based methods has not been studied. Here, we introduce a phylogenetic linear model in which the phylogeny can be a network to account for within-species variation in the continuous response trait assuming equal within-species variances across species. We show how inference based on the individual values can be reduced to a problem using species-level summaries, even when the within-species variance is estimated. Our method performs well under various simulation settings and is robust when within-species variances are unequal across species. When phenotypic (within-species) correlations differ from evolutionary (between-species) correlations, estimates of evolutionary coefficients are pulled towards the phenotypic coefficients for all methods we tested. Also, evolutionary rates are either underestimated or overestimated, depending on the mismatch between phenotypic and evolutionary relationships. We applied our method to morphological and geographical data from Polemonium. We find a strong negative correlation of leaflet size with elevation, despite a positive correlation within species. Our method can explore the role of gene flow in trait evolution by comparing the fit of a network to that of a tree. We find marginal evidence for leaflet size being affected by gene flow and support for previous observations on the challenges of using individual continuous traits to infer inheritance weights at reticulations. Our method is freely available in the Julia package PhyloNetworks. 
                        more » 
                        « less   
                    
                            
                            A Tale of Too Many Trees: A Conundrum for Phylogenetic Regression
                        
                    
    
            Abstract Just exactly which tree(s) should we assume when testing evolutionary hypotheses? This question has plagued comparative biologists for decades. Though all phylogenetic comparative methods require input trees, we seldom know with certainty whether even a perfectly estimated tree (if this is possible in practice) is appropriate for our studied traits. Yet, we also know that phylogenetic conflict is ubiquitous in modern comparative biology, and we are still learning about its dangers when testing evolutionary hypotheses. Here, we investigate the consequences of tree-trait mismatch for phylogenetic regression in the presence of gene tree–species tree conflict. Our simulation experiments reveal excessively high false positive rates for mismatched models with both small and large trees, simple and complex traits, and known and estimated phylogenies. In some cases, we find evidence of a directionality of error: assuming a species tree for traits that evolved according to a gene tree sometimes fares worse than the opposite. We also explored the impacts of tree choice using an expansive, cross-species gene expression dataset as an arguably “best-case” scenario in which one may have a better chance of matching tree with trait. Offering a potential path forward, we found promise in the application of a robust estimator as a potential, albeit imperfect, solution to some issues raised by tree mismatch. Collectively, our results emphasize the importance of careful study design for comparative methods, highlighting the need to fully appreciate the role of accurate and thoughtful phylogenetic modeling. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10575649
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Molecular Biology and Evolution
- Volume:
- 42
- Issue:
- 3
- ISSN:
- 0737-4038
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Phylogenetic comparative methods have long been a mainstay of evolutionary biology, allowing for the study of trait evolution across species while accounting for their common ancestry. These analyses typically assume a single, bifurcating phylogenetic tree describing the shared history among species. However, modern phylogenomic analyses have shown that genomes are often composed of mosaic histories that can disagree both with the species tree and with each other—so-called discordant gene trees. These gene trees describe shared histories that are not captured by the species tree, and therefore that are unaccounted for in classic comparative approaches. The application of standard comparative methods to species histories containing discordance leads to incorrect inferences about the timing, direction, and rate of evolution. Here, we develop two approaches for incorporating gene tree histories into comparative methods: one that constructs an updated phylogenetic variance–covariance matrix from gene trees, and another that applies Felsenstein's pruning algorithm over a set of gene trees to calculate trait histories and likelihoods. Using simulation, we demonstrate that our approaches generate much more accurate estimates of tree-wide rates of trait evolution than standard methods. We apply our methods to two clades of the wild tomato genusSolanumwith varying rates of discordance, demonstrating the contribution of gene tree discordance to variation in a set of floral traits. Our approaches have the potential to be applied to a broad range of classic inference problems in phylogenetics, including ancestral state reconstruction and the inference of lineage-specific rate shifts.more » « less
- 
            Satta, Yoko (Ed.)Abstract Likelihood-based tests of phylogenetic trees are a foundation of modern systematics. Over the past decade, an enormous wealth and diversity of model-based approaches have been developed for phylogenetic inference of both gene trees and species trees. However, while many techniques exist for conducting formal likelihood-based tests of gene trees, such frameworks are comparatively underdeveloped and underutilized for testing species tree hypotheses. To date, widely used tests of tree topology are designed to assess the fit of classical models of molecular sequence data and individual gene trees and thus are not readily applicable to the problem of species tree inference. To address this issue, we derive several analogous likelihood-based approaches for testing topologies using modern species tree models and heuristic algorithms that use gene tree topologies as input for maximum likelihood estimation under the multispecies coalescent. For the purpose of comparing support for species trees, these tests leverage the statistical procedures of their original gene tree-based counterparts that have an extended history for testing phylogenetic hypotheses at a single locus. We discuss and demonstrate a number of applications, limitations, and important considerations of these tests using simulated and empirical phylogenomic data sets that include both bifurcating topologies and reticulate network models of species relationships. Finally, we introduce the open-source R package SpeciesTopoTestR (SpeciesTopology Tests in R) that includes a suite of functions for conducting formal likelihood-based tests of species topologies given a set of input gene tree topologies.more » « less
- 
            Phylogenetic comparative methods comprise the general endeavor of using an estimated phylogenetic tree (or set of trees) to make secondary inferences: about trait evolution, diversification dynamics, biogeography, community ecology, and a wide range of other phenomena or processes. Over the past ten years or so, thephytoolsR package has grown to become an important research tool for phylogenetic comparative analysis.phytoolsis a diverse contributed R library now consisting of hundreds of different functions covering a variety of methods and purposes in phylogenetic biology. As of the time of writing,phytoolsincluded functionality for fitting models of trait evolution, for reconstructing ancestral states, for studying diversification on trees, and for visualizing phylogenies, comparative data, and fitted models, as well numerous other tasks related to phylogenetic biology. Here, I describe some significant features of and recent updates tophytools, while also illustrating several popular workflows of thephytoolscomputational software.more » « less
- 
            Abstract Traits underlie organismal responses to their environment and are essential to predict community responses to environmental conditions under global change. Species differ in life‐history traits, morphometrics, diet type, reproductive characteristics and habitat utilization.Trait associations are widely analysed using phylogenetic comparative methods (PCM) to account for correlations among related species. Similarly, traits are measured for some but not all species, and missing continuous traits (e.g. growth rate) can be imputed using ‘phylogenetic trait imputation’ (PTI), based on evolutionary relatedness and trait covariance. However, PTI has not been available for categorical traits, and estimating covariance among traits without ecological constraints risks inferring implausible evolutionary mechanisms.Here, we extend previous PCM and PTI methods by (1) specifying covariance among traits as a structural equation model (SEM), and (2) incorporating associations among both continuous and categorical traits. Fitting a SEM replaces the covariance among traits with a set of linear path coefficients specifying potential evolutionary mechanisms. Estimated parameters then represent regression slopes (i.e. the average change in trait Y given an exogenous change in trait X) that can be used to calculate both direct effects (X impacts Y) and indirect effects (X impacts Z and Z impacts Y).We demonstrate phylogenetic structural‐equation mixed‐trait imputation using 33 variables representing life history, reproductive, morphological, and behavioural traits for all >32,000 described fishes worldwide. SEM coefficients suggest that one degree Celsius increase in habitat is associated with an average 3.5% increase in natural mortality (including a 1.4% indirect impact that acts via temperature effects on the growth coefficient), and an average 3.0% decrease in fecundity (via indirect impacts on maximum age and length). Cross‐validation indicates that the model explains 54%–89% of variance for withheld measurements of continuous traits and has an area under the receiver‐operator‐characteristics curve of 0.86–0.99 for categorical traits.We use imputed traits to classify all fishes into life‐history types, and confirm a phylogenetic signal in three dominant life‐history strategies in fishes. PTI using phylogenetic SEMs ensures that estimated parameters are interpretable as regression slopes, such that the inferred evolutionary relationships can be compared with long‐term evolutionary and rearing experiments.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
