skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Atwater, Harry"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 21, 2026
  2. Free, publicly-accessible full text available February 1, 2026
  3. null (Ed.)
  4. Metasurfaces have recently risen to prominence in optical research, providing unique functionalities that can be used for imaging, beam forming, holography, polarimetry, and many more, while keeping device dimensions small. Despite the fact that a vast range of basic metasurface designs has already been thoroughly studied in the literature, the number of metasurfacerelated papers is still growing at a rapid pace, as metasurface research is now spreading to adjacent fields, including computational imaging, augmented and virtual reality, automotive, display, biosensing, nonlinear, quantum and topological optics, optical computing, and more. At the same time, the ability of metasurfaces to perform optical functions in much more compact optical systems has triggered strong and constantly growing interest from various industries that greatly benefit from the availability of miniaturized, highly functional, and efficient optical components that can be integrated in optoelectronic systems at low cost. This creates a truly unique opportunity for the field of metasurfaces to make both a scientific and an industrial impact. The goal of this Roadmap is to mark this “golden age” of metasurface research and define future directions to encourage scientists and engineers to drive research and development in the field of metasurfaces toward both scientific excellence and broad industrial adoption. 
    more » « less
  5. null (Ed.)
    Inorganic phototropic growth using only spatially conformal illumination generated Se–Cd films that exhibited precise light-defined mesoscale morphologies including highly ordered, anisotropic, and periodic ridge and trench nanotextures over entire macroscopic substrates. Growth was accomplished via a light-induced electrochemical method using an optically and chemically isotropic solution, an unpatterned substrate, and unstructured, incoherent, low-intensity illumination in the absence of chemical directing agents or physical templates and masks. The morphologies were defined by the illumination inputs: the nanotexture long axes aligned parallel to the optical E-field vector, and the feature sizes and periods scaled with the wavelength. Optically based modeling of the growth closely reproduced the experimental results, confirming the film morphologies were fully determined by the light–matter interactions during growth. Solution processing of the Se–Cd films resulted in stoichiometric, crystalline CdSe films that also exhibited ordered nanotextures, demonstrating that inorganic phototropic growth can effect tunable, template-free generation of ordered CdSe nanostructures over macroscopic length scales. 
    more » « less
  6. Abstract Renewable fuel generation is essential for a low carbon footprint economy. Thus, over the last five decades, a significant effort has been dedicated towards increasing the performance of solar fuels generating devices. Specifically, the solar to hydrogen efficiency of photoelectrochemical cells has progressed steadily towards its fundamental limit, and the faradaic efficiency towards valuable products in CO2reduction systems has increased dramatically. However, there are still numerous scientific and engineering challenges that must be overcame in order to turn solar fuels into a viable technology. At the electrode and device level, the conversion efficiency, stability and products selectivity must be increased significantly. Meanwhile, these performance metrics must be maintained when scaling up devices and systems while maintaining an acceptable cost and carbon footprint. This roadmap surveys different aspects of this endeavor: system benchmarking, device scaling, various approaches for photoelectrodes design, materials discovery, and catalysis. Each of the sections in the roadmap focuses on a single topic, discussing the state of the art, the key challenges and advancements required to meet them. The roadmap can be used as a guide for researchers and funding agencies highlighting the most pressing needs of the field. 
    more » « less