skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Avdiukhin, Dmitrii"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Motivated by applications to classification problems on metric data, we study Weighted Metric Clustering problem: given a metric d over n points and a k x k symmetric matrix A with non-negative entries, the goal is to find a k-partition of these points into clusters C1,...,Ck, while minimizing the sum of A[i,j] * d(u,v) over all pairs of clusters Ci and Cj and all pairs of points u from Ci and v from Cj. Specific choices of A lead to Weighted Metric Clustering capturing well-studied graph partitioning problems in metric spaces, such as Min-Uncut, Min-k-Sum, Min-k-Cut, and more.Our main result is that Weighted Metric Clustering admits a polynomial-time approximation scheme (PTAS). Our algorithm handles all the above problems using the Sherali-Adams linear programming relaxation. This subsumes several prior works, unifies many of the techniques for various metric clustering objectives, and yields a PTAS for several new problems, including metric clustering on manifolds and a new family of hierarchical clustering objectives. Our experiments on the hierarchical clustering objective show that it better captures the ground-truth structural information compared to the popular Dasgupta's objective.

     
    more » « less
    Free, publicly-accessible full text available March 25, 2025
  2. Motivated by performance optimization of large-scale graph processing systems that distribute the graph across multiple machines, we consider the balanced graph partitioning problem. Compared to most of the previous work, we study the multi-dimensional variant in which balance according to multiple weight functions is required. As we demonstrate by experimental evaluation, such multi-dimensional balance is essential for achieving performance improvements for typical distributed graph processing workloads. We propose a new scalable technique for the multidimensional balanced graph partitioning problem. It is based on applying randomized projected gradient descent to a non-convex continuous relaxation of the objective. We show how to implement the new algorithm efficiently in both theory and practice utilizing various approaches for the projection step. Experiments with large-scale graphs containing up to hundreds of billions of edges indicate that our algorithm has superior performance compared to the state of the art. 
    more » « less