- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
02000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Awan, Sana (2)
-
Li, Fengjun (2)
-
Luo, Bo (2)
-
Kiani, Sohaib (1)
-
Lan, Chao (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In the evasion attacks against deep neural networks (DNN), the attacker generates adversarial instances that are visually indistinguishable from benign samples and sends them to the target DNN to trigger misclassifications. In this paper, we propose a novel multi-view adversarial image detector, namely Argos, based on a novel observation. That is, there exist two “souls” in an adversarial instance, i.e., the visually unchanged content, which corresponds to the true label, and the added invisible perturbation, which corresponds to the misclassified label. Such inconsistencies could be further amplified through an autoregressive generative approach that generates images with seed pixels selected from the original image, a selected label, and pixel distributions learned from the training data. The generated images (i.e., the “views”) will deviate significantly from the original one if the label is adversarial, demonstrating inconsistencies that Argos expects to detect. To this end, Argos first amplifies the discrepancies between the visual content of an image and its misclassified label induced by the attack using a set of regeneration mechanisms and then identifies an image as adversarial if the reproduced views deviate to a preset degree. Our experimental results show that Argos significantly outperforms two representative adversarial detectors in both detection accuracy and robustness against six well-known adversarial attacks. The code is available at: https://github.com/sohaib730/Argos-Adversarial_Detection.more » « less
-
Awan, Sana ; Luo, Bo ; Li, Fengjun ( , European Symposium on Research in Computer Security)null (Ed.)Federated learning (FL) is an emerging machine learning paradigm. With FL, distributed data owners aggregate their model updates to train a shared deep neural network collaboratively, while keeping the training data locally. However, FL has little control over the local data and the training process. Therefore, it is susceptible to poisoning attacks, in which malicious or compromised clients use malicious training data or local updates as the attack vector to poison the trained global model. Moreover, the performance of existing detection and defense mechanisms drops significantly in a scaled-up FL system with non-iid data distributions. In this paper, we propose a defense scheme named CONTRA to defend against poisoning attacks, e.g., label-flipping and backdoor attacks, in FL systems. CONTRA implements a cosine-similarity-based measure to determine the credibility of local model parameters in each round and a reputation scheme to dynamically promote or penalize individual clients based on their per-round and historical contributions to the global model. With extensive experiments, we show that CONTRA significantly reduces the attack success rate while achieving high accuracy with the global model. Compared with a state-of-the-art (SOTA) defense, CONTRA reduces the attack success rate by 70% and reduces the global model performance degradation by 50%.more » « less