skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Awumey, E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Modern advances in AI have increased employer interest in tracking workers’ biometric signals — e.g., their brainwaves and facial expressions — to evaluate and make predictions about their performance and productivity. These technologies afford managers information about internal emotional and physiological states that were previously accessible only to individual workers, raising new concerns around worker privacy and autonomy. Yet, the research literature on the impact of AI-powered biometric work monitoring (AI-BWM) technologies on workers remains fragmented across disciplines and industry sectors, limiting our understanding of its impacts on workers at large. In this paper, we sytematically review 129 papers, spanning varied disciplines and industry sectors, that discuss and analyze the impact of AI-powered biometric monitoring technologies in occupational settings. We situate this literature across a process model that spans the development, deployment, and usage phases of these technologies. We further draw on Shelby et al.’s Taxonomy of Socio-technical Harms in AI systems to systematize the harms experienced by workers across the three phases of our process model. We find that the development, deployment, and sustained use of AI-powered biometric work monitoring technologies put workers at risk of a number of the socio-technical harms specified by Shelby et al.: e.g., by forcing workers to exert additional emotional labor to avoid flagging unreliable affect monitoring systems, or through the use of these data to make inferences about productivity. Our research contributes to the field of critical AI studies by highlighting the potential for a cascade of harms to occur when the impact of these technologies on workers is not considered at all phases of our process model. 
    more » « less