skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Aydi, Elias"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Radio emission has been detected from tens of white dwarfs, in particular in accreting systems. Additionally, radio emission has been predicted as a possible outcome of a planetary system around a white dwarf. We searched for 3 GHz radio continuum emission in 846 000 candidate white dwarfs previously identified in Gaia using the Very Large Array Sky Survey (VLASS) Epoch 1 Quick Look Catalogue. We identified 13 candidate white dwarfs with a counterpart in VLASS within 2 arcsec. Five of those were found not to be white dwarfs in follow-up or archival spectroscopy, whereas seven others were found to be chance alignments with a background source in higher resolution optical or radio images. The remaining source, WDJ204259.71+152108.06, is found to be a white dwarf and M-dwarf binary with an orbital period of 4.1 d and long-term stochastic optical variability, as well as luminous radio and X-ray emission. For this binary, we find no direct evidence of a background contaminant, and a chance alignment probability of only ≈2 per cent. However, other evidence points to the possibility of an unfortunate chance alignment with a background radio and X-ray emitting quasar, including an unusually poor Gaia DR3 astrometric solution for this source. With at most one possible radio emitting white dwarf found, we conclude that strong (≳1–3 mJy) radio emission from white dwarfs in the 3 GHz band is virtually non-existent outside of interacting binaries.

     
    more » « less
  2. Abstract

    In 2021 August, the Fermi Large Area Telescope, H.E.S.S., and MAGIC detected GeV and TeVγ-ray emission from an outburst of recurrent nova RS Ophiuchi. This detection represents the first very high-energyγ-rays observed from a nova, and it opens a new window to study particle acceleration. Both H.E.S.S. and MAGIC described the observedγ-rays as arising from a single, external shock. In this paper, we perform detailed, multi-zone modeling of RS Ophiuchi’s 2021 outburst, including a self-consistent prescription for particle acceleration and magnetic field amplification. We demonstrate that, contrary to previous work, a single shock cannot simultaneously explain RS Ophiuchi’s GeV and TeV emission, in particular the spectral shape and distinct light-curve peaks. Instead, we put forward a model involving multiple shocks that reproduces the observedγ-ray spectrum and temporal evolution. The simultaneous appearance of multiple distinct velocity components in the nova optical spectrum over the first several days of the outburst supports the presence of distinct shocks, which may arise either from the strong latitudinal dependence of the density of the external circumbinary medium (e.g., in the binary equatorial plane versus the poles) or due to internal collisions within the white dwarf ejecta (which power theγ-ray emission in classical novae).

     
    more » « less
  3. Abstract We present the discovery of a new optical/X-ray source likely associated with the Fermi γ -ray source 4FGL J1408.6–2917. Its high-amplitude periodic optical variability, large spectroscopic radial-velocity semiamplitude, evidence for optical emission lines and flaring, and X-ray properties together imply the source is probably a new black widow millisecond pulsar binary. We compile the properties of the 41 confirmed and suspected field black widows, finding a median secondary mass of 0.027 ± 0.003 M ⊙ . Considered jointly with the more massive redback millisecond pulsar binaries, we find that the “spider” companion mass distribution remains strongly bimodal, with essentially zero systems having companion masses of between ∼0.07 and 0.1 M ⊙ . X-ray emission from black widows is typically softer and less luminous than in redbacks, consistent with less efficient particle acceleration in the intrabinary shock in black widows, excepting a few systems that appear to have more efficient “redback-like” shocks. Together black widows and redbacks dominate the census of the fastest spinning field millisecond pulsars in binaries with known companion types, making up ≳80% of systems with P spin < 2 ms. Similar to redbacks, the neutron star masses in black widows appear on average significantly larger than the canonical 1.4 M ⊙ , and many of the highest-mass neutron stars claimed to date are black widows with M NS ≳ 2.1 M ⊙ . Both of these observations are consistent with an evolutionary picture where spider millisecond pulsars emerge from short orbital period progenitors that had a lengthy period of mass transfer initiated while the companion was on the main sequence, leading to fast spins and high masses. 
    more » « less
  4. ABSTRACT

    We present 3D hydrodynamic models of the interaction between the outflows of evolved, pulsating, Asymptotic Giant Branch (AGB) stars and nearby (<3 stellar radii) substellar companions (Mcomp ≲ 40 MJ). Our models show that due to resonances between the orbital period of the companion and the pulsation period of the AGB star, multiple spiral structures can form; the shocks driven by the pulsations are enhanced periodically in different regions as they encounter the denser material created by the substellar companion’s wake. We discuss the properties of these spiral structures and the effect of the companion parameters on them. We also demonstrate that the gravitational potential of the nearby companion enhances the mass-loss from the AGB star. For more massive (Mcomp > 40 MJ) and more distant companions (>4 stellar radii), a single spiral arm forms. We discuss the possibility of observing these structures with the new generations of high-resolution, high-sensitivity instruments, and using them to ‘find’ substellar companions around bright, evolved stars. Our results also highlight possible structures that could form in our Solar system when the Sun turns into an AGB star.

     
    more » « less
  5. Abstract

    We present the study of multiwavelength observations of an unidentified Fermi Large Area Telescope (LAT) source, 4FGL J1910.7−5320, a new candidate redback millisecond pulsar binary. In the 4FGL 95% error region of 4FGL J1910.7−5320, we find a possible binary with a 8.36 hr orbital period from the Catalina Real-Time Transient Survey, confirmed by optical spectroscopy using the SOAR telescope. This optical source was recently independently discovered as a redback pulsar by the TRAPUM project, confirming our prediction. We fit the optical spectral energy distributions of 4FGL J1910.7−5320 with a blackbody model, inferring a maximum distance of 4.1 kpc by assuming that the companion fills its Roche lobe with a radius ofR= 0.7R. Using a 12.6 ks Chandra X-ray observation, we identified an X-ray counterpart for 4FGL J1910.7−5320, with a spectrum that can be described by an absorbed power law with a photon index of 1.0 ± 0.4. The spectrally hard X-ray emission shows tentative evidence for orbital variability. Using more than 12 yr of Fermi-LAT data, we refined the position of theγ-ray source, and the optical candidate still lies within the 68% positional error circle. In addition to 4FGL J1910.7−5320, we find a variable optical source with a periodic signal of 4.28 hr inside the 4FGL catalog 95% error region of another unidentified Fermi source, 4FGL J2029.5−4237. However, theγ-ray source does not have a significant X-ray counterpart in an 11.7 ks Chandra observation, with a 3σflux upper limit of 2.4 × 10−14erg cm−2s−1(0.3–7 keV). Moreover, the optical source is outside our updated Fermi-LAT 95% error circle. These observational facts all suggest that this new redback millisecond pulsar powers the gamma-ray source 4FGL J1910.7−5320 while 4FGL J2029.5−4237 is unlikely theγ-ray counterpart to the 4.28 hr variable.

     
    more » « less
  6. ABSTRACT

    The discovery that many classical novae produce detectable GeV γ-ray emission has raised the question of the role of shocks in nova eruptions. Here, we use radio observations of nova V809 Cep (nova Cep 2013) with the Jansky Very Large Array to show that it produced non-thermal emission indicative of particle acceleration in strong shocks for more than a month starting about 6 weeks into the eruption, quasi-simultaneous with the production of dust. Broadly speaking, the radio emission at late times – more than 6 months or so into the eruption – is consistent with thermal emission from $10^{-4}\, {\rm M}_\odot$ of freely expanding, 104 K ejecta. At 4.6 and 7.4 GHz, however, the radio light curves display an initial early-time peak 76 d after the discovery of the eruption in the optical (t0). The brightness temperature at 4.6 GHz on day 76 was greater than 105 K, an order of magnitude above what is expected for thermal emission. We argue that the brightness temperature is the result of synchrotron emission due to internal shocks within the ejecta. The evolution of the radio spectrum was consistent with synchrotron emission that peaked at high frequencies before low frequencies, suggesting that the synchrotron from the shock was initially subject to free–free absorption by optically thick ionized material in front of the shock. Dust formation began around day 37, and we suggest that internal shocks in the ejecta were established prior to dust formation and caused the nucleation of dust.

     
    more » « less
  7. null (Ed.)
  8. null (Ed.)
  9. ABSTRACT

    Peaking at 3.7 mag on 2020 July 11, YZ Ret was the second-brightest nova of the decade. The nova’s moderate proximity (2.7 kpc, from Gaia) provided an opportunity to explore its multiwavelength properties in great detail. Here, we report on YZ Ret as part of a long-term project to identify the physical mechanisms responsible for high-energy emission in classical novae. We use simultaneous Fermi/LAT and NuSTAR observations complemented by XMM–Newton X-ray grating spectroscopy to probe the physical parameters of the shocked ejecta and the nova-hosting white dwarf. The XMM–Newton observations revealed a supersoft X-ray emission which is dominated by emission lines of C v, C vi, N vi, N vii, and O viii rather than a blackbody-like continuum, suggesting CO-composition of the white dwarf in a high-inclination binary system. Fermi/LAT-detected YZ Ret for 15 d with the γ-ray spectrum best described by a power law with an exponential cut-off at 1.9 ± 0.6 GeV. In stark contrast with theoretical predictions and in keeping with previous NuSTAR observations of Fermi-detected classical novae (V5855 Sgr and V906 Car), the 3.5–78-keV X-ray emission is found to be two orders of magnitude fainter than the GeV emission. The X-ray emission observed by NuSTAR is consistent with a single-temperature thermal plasma model. We do not detect a non-thermal tail of the GeV emission expected to extend down to the NuSTAR band. NuSTAR observations continue to challenge theories of high-energy emission from shocks in novae.

     
    more » « less
  10. ABSTRACT

    We analyse high-resolution spectra of two classical novae that exploded in the Small Magellanic Cloud (SMC). 7Be ii resonance transitions are detected in both ASASSN-19qv and ASASSN-20ni novae. This is the first detection outside the Galaxy and confirms that thermo-nuclear runaway reactions, leading to the 7Be formation, are effective also in the low-metallicity regime, characteristic of the SMC. Derived yields are of N(7Be = 7Li)/N(H)  = (5.3 ± 0.2) × 10−6 which are a factor 4 lower than the typical values of the Galaxy. Inspection of two historical novae in the Large Magellanic Cloud observed with IUE in 1991 and 1992 showed also the possible presence of 7Be and similar yields. For an ejecta of MH, ej = 10−5 M⊙, the amount of 7Li produced is of $M_{^7 Li} = (3.7 \pm 0.6) \times 10^{-10}$ M⊙ per nova event. Detailed chemical evolutionary model for the SMC shows that novae could have made an amount of lithium in the SMC corresponding to a fractional abundance of A(Li) ≈ 2.6. Therefore, it is argued that a comparison with the abundance of Li in the SMC, as measured by its interstellar medium, could effectively constrain the amount of the initial abundance of primordial Li, which is currently controversial.

     
    more » « less