Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Social VR has increased in popularity due to its affordances for rich, embodied, and nonverbal communication. However, nonverbal communication remains inaccessible for blind and low vision people in social VR. We designed accessible cues with audio and haptics to represent three nonverbal behaviors: eye contact, head shaking, and head nodding. We evaluated these cues in real-time conversation tasks where 16 blind and low vision participants conversed with two other users in VR. We found that the cues were effective in supporting conversations in VR. Participants had statistically significantly higher scores for accuracy and confidence in detecting attention during conversations with the cues than without. We also found that participants had a range of preferences and uses for the cues, such as learning social norms. We present design implications for handling additional cues in the future, such as the challenges of incorporating AI. Through this work, we take a step towards making interpersonal embodied interactions in VR fully accessible for blind and low vision people.more » « lessFree, publicly-accessible full text available October 27, 2025
-
In virtual environments, many social cues (e.g. gestures, eye contact, and proximity) are currently conveyed visually or auditorily. Indicating social cues in other modalities, such as haptic cues to complement visual or audio signals, will help to increase VR’s accessibility and take advantage of the platform’s inherent flexibility. However, accessibility implementations in social VR are often siloed by single sensory modalities. To broaden the accessibility of social virtual reality beyond replacing one sensory modality with another, we identified a subset of social cues and built tools to enhance them allowing users to switch between modalities to choose how these cues are represented. Because consumer VR uses primarily visual and auditory stimuli, we started with social cues that were not accessible for blind and low vision (BLV) and d/Deaf and hard of hearing (DHH) people, and expanded how they could be represented to accommodate a number of needs. We describe how these tools were designed around the principle of social cue switching, and a standard distribution method to amplify reach.more » « less
-
As social VR applications grow in popularity, blind and low vi- sion users encounter continued accessibility barriers. Yet social VR, which enables multiple people to engage in the same virtual space, presents a unique opportunity to allow other people to support a user’s access needs. To explore this opportunity, we designed a framework based on physical sighted guidance that enables a guide to support a blind or low vision user with navigation and visual interpretation. A user can virtually hold on to their guide and move with them, while the guide can describe the environment. We studied the use of our framework with 16 blind and low vision participants and found that they had a wide range of preferences. For example, we found that participants wanted to use their guide to support social interactions and establish a human connection with a human-appearing guide. We also highlight opportunities for novel guidance abilities in VR, such as dynamically altering an inaccessible environment. Through this work, we open a novel design space for a versatile approach for making VR fully accessiblemore » « less
-
Detecting and avoiding obstacles while navigating can pose a challenge for people with low vision, but augmented reality (AR) has the potential to assist by enhancing obstacle visibility. Perceptual and user experience research is needed to understand how to craft effective AR visuals for this purpose. We developed a prototype AR application capable of displaying multiple kinds of visual cues for obstacles on an optical see-through head-mounted display. We assessed the usability of these cues via a study in which participants with low vision navigated an obstacle course. The results suggest that 3D world-locked AR cues were superior to directional heads-up cues for most participants during this activity.more » « less
-
Teachers of the visually impaired (TVIs) regularly present tactile materials (tactile graphics, 3D models, and real objects) to students with vision impairments. Researchers have been increasingly interested in designing tools to support the use of tactile materials, but we still lack an in-depth understanding of how tactile materials are created and used in practice today. To address this gap, we conducted interviews with 21 TVIs and a 3-week diary study with eight of them. We found that tactile materials were regularly used for academic as well as non-academic concepts like tactile literacy, motor ability, and spatial awareness. Real objects and 3D models served as “stepping stones” to tactile graphics and our participants preferred to teach with 3D models, despite finding them difficult to create, obtain, and modify. Use of certain materials also carried social implications; participants selected materials that fostered student independence and allow classroom inclusion. We contribute design considerations, encouraging future work on tactile materials to enable student and TVI co-creation, facilitate rapid prototyping, and promote movement and spatial awareness. To support future research in this area, our paper provides a fundamental understanding of current practices. We bridge these practices to established pedagogical approaches and highlight opportunities for growth regarding this important genre of educational materials.more » « less