- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
22
- Author / Contributor
- Filter by Author / Creator
-
-
Azizian-Farsani, Elaheh (4)
-
Mahmoudi, Ali (4)
-
Khonsari, Michael M (3)
-
Rouhi_Moghanlou, Mohammad (2)
-
Amooie, Mohammad A (1)
-
Khonsari, Michael_M (1)
-
Moghanlou, Mohammad Rouhi (1)
-
Wilson, Peyton J (1)
-
Wilson, Peyton_J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2026
-
Rouhi_Moghanlou, Mohammad; Azizian-Farsani, Elaheh; Mahmoudi, Ali; Khonsari, Michael M (, Progress in Additive Manufacturing)Free, publicly-accessible full text available April 1, 2026
-
Azizian-Farsani, Elaheh; Rouhi_Moghanlou, Mohammad; Mahmoudi, Ali; Wilson, Peyton_J; Khonsari, Michael_M (, Progress in Additive Manufacturing)Abstract This study uses the Taguchi optimization methodology to optimize the fatigue performance of short carbon fiber-reinforced polyamide samples printed via fused deposition modeling (FDM). The optimal printing properties that maximize the fatigue limit were determined to be 0.075 mm layer thickness, 0.4 mm infill line distance, 50 mm/s printing speed, and 55 °C chamber temperature with layer thickness being the most critical parameter. To qualify fatigue endurance limit, the energy dissipation in uniaxial fatigue was quantified by using hysteresis energy and temperature rise at steady state. From these results, the fatigue limit for a specimen printed with optimized printing parameters was predicted to be 69 and 70 MPa from hysteresis energy and temperature rise at steady state methods, consecutively, and it was experimentally determined to be 67 MPa. This work demonstrates the effectiveness of the Taguchi optimization method when applied to additive manufacturing and the swift ability to predict the fatigue limit of a material with only one specimen to produce optimal additively manufactured components for industrial applications, as validated by experimental fatigue testing.more » « less
-
Amooie, Mohammad A; Wilson, Peyton J; Mahmoudi, Ali; Azizian-Farsani, Elaheh; Khonsari, Michael M (, International Journal of Fatigue)
An official website of the United States government
