- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0002000000000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Backendal, Matilda (1)
-
Backendal, Matilda (1)
-
Bellare, Mihir (1)
-
Bellare, Mihir (1)
-
Günther, Felix (1)
-
Scarlata, Matteo (1)
-
Sorrell, Jessica (1)
-
Sun, Jiahao (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
Handschuh, Helena (1)
-
Lysyanskaya, Anna (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Handschuh, Helena; Lysyanskaya, Anna (Ed.)In Internet security protocols including TLS 1.3, KEMTLS, MLS and Noise, HMAC is being assumed to be a dual-PRF, meaning a PRF not only when keyed conventionally (through its first input), but also when "swapped'' and keyed (unconventionally) through its second (message) input. We give the first in-depth analysis of the dual-PRF assumption on HMAC. For the swap case, we note that security does not hold in general, but completely characterize when it does; we show that HMAC is swap-PRF secure if and only if keys are restricted to sets satisfying a condition called feasibility, that we give, and that holds in applications. The sufficiency is shown by proof and the necessity by attacks. For the conventional PRF case, we fill a gap in the literature by proving PRF security of HMAC for keys of arbitrary length. Our proofs are in the standard model, make assumptions only on the compression function underlying the hash function, and give good bounds in the multi user setting. The positive results are strengthened through achieving a new notion of variable key-length PRF security that guarantees security even if different users use keys of different lengths, as happens in practice.more » « less
-
Backendal, Matilda; Bellare, Mihir; Sorrell, Jessica; Sun, Jiahao (, Secure IT Systems - 23rd Nordic Conference, NordSec 2018, Oslo, Norway, November 28-30, 2018, Proceedings. Lecture Notes in Computer Science 11252, Springer 2018)The Fiat-Shamir paradigm encompasses many different ways of turning a given identification scheme into a signature scheme. Security proofs pertain sometimes to one variant, sometimes to another. We systematically study three variants that we call the challenge (signature is challenge and response), commit (signature is commitment and response), and transcript (signature is challenge, commitment and response) variants. Our framework captures the variants via transforms that determine the signature scheme as a function of not only the identification scheme and hash function (to cover both standard and random oracle model hashing), but also what we call a signing algorithm, to cover both classical and with-abort signing. We relate the security of the signature schemes produced by these transforms, giving minimal conditions under which uf-security of one transfers to the other. To apply this comprehensively, we formalize linear identification schemes, show that many schemes in the literature are linear, and show that any linear scheme meets our conditions for the signature schemes given by the three transforms to have equivalent uf-security. Our results give a comprehensive picture of the Fiat-Shamir zoo and allow proofs of security in the literature to be transferred automatically from one variant to another.more » « less