skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bader, D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Connectomics, a subfield of neuroscience, reconstructs structural and functional brain maps at synapse-level resolution. These complex spatial maps consist of tree-like neurons interconnected by synapses. Motif analysis is a widely used method for identifying recurring subgraph patterns in connectomes. These motifs, thus, potentially represent fundamental units of information processing. However, existing computational tools often oversimplify neurons as mere nodes in a graph, disregarding their intricate morphologies. In this paper, we introduceMoMo, a novel interactive visualization framework for analyzingneuron morphology-aware motifsin large connectome graphs. First, we propose an advanced graph data structure that integrates both neuronal morphology and synaptic connectivity. This enables highly efficient, parallel subgraph isomorphism searches, allowing for interactive morphological motif queries. Second, we develop a sketch-based interface that facilitates the intuitive exploration of morphology-based motifs within our new data structure. Users can conduct interactive motif searches on state-of-the-art connectomes and visualize results as interactive 3D renderings. We present a detailed goal and task analysis for motif exploration in connectomes, incorporating neuron morphology. Finally, we evaluateMoMothrough case studies with four domain experts, who asses the tool’s usefulness and effectiveness in motif exploration, and relevance to real-world neuroscience research. The source code forMoMois availablehere. 
    more » « less
    Free, publicly-accessible full text available July 3, 2026
  2. Modern climate projections lack adequate spatial and temporal resolution due to computational constraints. A consequence is inaccurate and imprecise predictions of critical processes such as storms. Hybrid methods that combine physics with machine learning (ML) have introduced a new generation of higher fidelity climate simulators that can sidestep Moore's Law by outsourcing compute-hungry, short, high-resolution simulations to ML emulators. However, this hybrid ML-physics simulation approach requires domain-specific treatment and has been inaccessible to ML experts because of lack of training data and relevant, easy-to-use workflows. We present ClimSim, the largest-ever dataset designed for hybrid ML-physics research. It comprises multi-scale climate simulations, developed by a consortium of climate scientists and ML researchers. It consists of 5.7 billion pairs of multivariate input and output vectors that isolate the influence of locally-nested, high-resolution, high-fidelity physics on a host climate simulator's macro-scale physical state.The dataset is global in coverage, spans multiple years at high sampling frequency, and is designed such that resulting emulators are compatible with downstream coupling into operational climate simulators. We implement a range of deterministic and stochastic regression baselines to highlight the ML challenges and their scoring. The data (https://huggingface.co/datasets/LEAP/ClimSim_high-res) and code (https://leap-stc.github.io/ClimSim) are released openly to support the development of hybrid ML-physics and high-fidelity climate simulations for the benefit of science and society. 
    more » « less