skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bagci, F Selin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Jamming actuators have been proposed for many portable or wearable applications, yet the performance of these actuators will vary widely with fluidic leaks that degrade vacuum pressure and therefore maximum stiffness and stiffness over time. We investigate the power consumption and pressure in a series of leaky jamming actuators using four approaches: continuous jamming, jamming once, and re-jamming at regular intervals or if the pressure falls outside a specified range. We demonstrate the pressures and power consumptions of these approaches in a soft gripper and an active robotic elbow brace. We found that re-jamming when pressure fell below a target range reduced power consumption by more than a factor of 7.5 over continuous jamming while maintaining performance. These findings, and other efficient re-jamming approaches, will be crucial to jamming robots that can operate after damage and untethered for multiple hours. 
    more » « less
    Free, publicly-accessible full text available April 22, 2026