Abstract Continuous layer jamming is an effective tunable stiffness mechanism that utilizes vacuum to vary friction between laminates enclosed in a membrane. In this paper, we present a discrete layer jamming mechanism that is composed of a multilayered beam and multiple variable pressure clamps placed discretely along the beam; system stiffness can be varied by changing the pressure applied by the clamps. In comparison to continuous layer jamming, discrete layer jamming is simpler as it can be implemented with dynamic variable pressure actuators for faster control, better portability, and no sealing issues due to no need for an air supply. Design and experiments show that discrete layer jamming can be used for a variable stiffness co-robot arm. The concept is validated by quasi-static cantilever bending experiments. The measurements show that clamping 10% of the beam area with two clamps increases the bending stiffness by around 17 times when increasing the clamping pressure from 0 to 3 MPa. Computational case studies using finite element analysis for the five key parameters are presented, including clamp location, clamp width, number of laminates, friction coefficient, and number of clamps. Clamp location, number of clamps, and number of laminates are found to be most useful for optimizing a discrete layer jamming design. Actuation requirements for a variable pressure clamp are presented based on results from laminate beam compression tests. 
                        more » 
                        « less   
                    This content will become publicly available on April 22, 2026
                            
                            A Feedback-Controlled Jamming Approach for Variable-Stiffness Actuators in Untethered Soft Robots
                        
                    
    
            Jamming actuators have been proposed for many portable or wearable applications, yet the performance of these actuators will vary widely with fluidic leaks that degrade vacuum pressure and therefore maximum stiffness and stiffness over time. We investigate the power consumption and pressure in a series of leaky jamming actuators using four approaches: continuous jamming, jamming once, and re-jamming at regular intervals or if the pressure falls outside a specified range. We demonstrate the pressures and power consumptions of these approaches in a soft gripper and an active robotic elbow brace. We found that re-jamming when pressure fell below a target range reduced power consumption by more than a factor of 7.5 over continuous jamming while maintaining performance. These findings, and other efficient re-jamming approaches, will be crucial to jamming robots that can operate after damage and untethered for multiple hours. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10613535
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3315-2020-5
- Page Range / eLocation ID:
- 1 to 7
- Format(s):
- Medium: X
- Location:
- Lausanne, Switzerland
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Elastomer‐granule composites have been used to switch between soft and stiff states by applying negative pressure differentials that cause the membrane to squeeze the internal grains, inducing dilation and jamming. Applications of this phenomenon have ranged from universal gripping to adaptive mobility. Previously, the combination of this jamming phenomenon with the ability to transport grains across multiple soft actuators for shape morphing has not yet been demonstrated. In this paper, the authors demonstrate the use of hollow glass spheres as granular media that functions as a jammable “quasi‐hydraulic” fluid in a fluidic elastomeric actuator that better mimics a key featur of animal musculature: independent control over i) isotonic actuation for motion; and ii) isometric actuation for stiffening without shape change. To best implement the quasi‐hydraulic fluid, the authors design and build a fluidic device. Leveraging this combination of physical properties creates a new option for fluidic actuation that allows higher specific stiffness actuators using lower volumetric flow rates in addition to independent control over shape and stiffness. These features are showcased in a robotic catcher's mitt by stiffening the fluid in the glove's open configuration for catching, unjamming the media, then pumping additional fluid to the mitt to inflate and grasp.more » « less
- 
            null (Ed.)Inflated continuum robots are promising for a variety of navigation tasks, but controlling their motion with a small number of actuators is challenging. These inflated beam robots tend to buckle under compressive loads, producing extremely tight local curvature at difficult-to-control buckle point locations. In this paper, we present an inflated beam robot that uses distributed stiffness changing sections enabled by positive pressure layer jamming to control or prevent buckling. Passive valves are actuated by an electromagnet carried by an electromechanical device that travels inside the main inflated beam robot body. The valves themselves require no external connections or wiring, allowing the distributed stiffness control to be scaled to long beam lengths. Multiple layer jamming elements are stiffened simultaneously to achieve global stiffening, allowing the robot to support greater cantilevered loads and longer unsupported lengths. Local stiffening, achieved by leaving certain layer jamming elements unstiffened, allows the robot to produce "virtual joints" that dynamically change the robot kinematics. Implementing these stiffening strategies is compatible with growth through tip eversion and tendon steering, and enables a number of new capabilities for inflated beam robots and tip-everting robots.more » « less
- 
            null (Ed.)Jamming is a phenomenon in which a collectionof compliant elements is encased in an airtight envelope, anda vacuum-induced pressure enhances frictional and kinematiccoupling, resulting in dramatic changes in stiffness. This paperintroduces the jamming of square cross-sectioned fibers, whichallow for tunable and programmable anisotropic stiffness. Atheoretical model captures the effect of major geometric designparameters on the direction-variant bending stiffness of theselong and slender jamming elements. The model is experimen-tally validated, and a 13-fold stiffening in one direction anda 22-fold stiffening in the orthogonal direction is achievedwith a single jamming element. The performance of a square-fiber-jamming continuum robot structure is demonstrated in asteering task, with an average reduction of 74% in the measuredinsertion force when unjammed, and a direction-variant 53%or 100% increase in the measured tip stiffness when jammed.more » « less
- 
            Abstract There are two major structural paradigms in robotics: soft machines, which are conformable, durable, and safe; and traditional rigid robots, which are fast, precise, and capable of applying high forces. Here, the paradigms are bridged by enabling soft machines to behave like traditional rigid robots on command. This task is accomplished via laminar jamming, a structural phenomenon in which a laminate of compliant strips becomes strongly coupled through friction when a pressure gradient is applied, causing dramatic changes in mechanical properties. Rigorous analytical and finite element models of laminar jamming are developed, and jamming structures are experimentally characterized to show that the models are highly accurate. Then jamming structures are integrated into soft machines to enable them to selectively exhibit the stiffness, damping, and kinematics of traditional rigid robots. The models allow jamming structures to efficiently meet arbitrary performance specifications, and the physical demonstrations illustrate how to construct systems that can behave like either soft machines or traditional rigid robots at will, such as continuum manipulators that can rapidly have joints appear and disappear. This study aims to foster a new generation of mechanically versatile machines and structures that cannot simply be classified as “soft” or “rigid.”more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
