- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Bagherzadeh, Nader (2)
-
Angizi, Shaahin (1)
-
Boyraz, Ozdal (1)
-
Braganca, Patrick (1)
-
Chen, Jen-Ru (1)
-
Fan, Deliang (1)
-
He, Zhezhi (1)
-
Krivorotov, Ilya N. (1)
-
Lee, Han Kyu (1)
-
Montoya, Eric Arturo (1)
-
Ngelale, Randy (1)
-
Nilsson, Mikael (1)
-
Tseng, Hsin-Wei (1)
-
Wan, Lei (1)
-
Yang, En (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Design and Evaluation of a Spintronic In-Memory Processing Platform for Non-Volatile Data EncryptionAngizi, Shaahin; He, Zhezhi; Bagherzadeh, Nader; Fan, Deliang (, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems)In this paper, we propose an energy-efficient reconfigurable platform for in-memory processing based on novel 4-terminal spin Hall effect-driven domain wall motion devices that could be employed as both non-volatile memory cell and in-memory logic unit. The proposed designs lead to unity of memory and logic. The device to system level simulation results show that, with 28% area increase in memory structure, the proposed in-memory processing platform achieves a write energy ~15.6 fJ/bit with 79% reduction compared to that of SOT-MRAM counterpart while keeping the identical 1ns writing speed. In addition, the proposed in-memory logic scheme improves the operating energy by 61.3%, as compared with the recent non-volatile in-memory logic designs. An extensive reliability analysis is also performed over the proposed circuits. We employ Advanced Encryption Standard (AES) algorithm as a case study to elucidate the efficiency of the proposed platform at application level. Simulation results exhibit that the proposed platform can show up to 75.7% and 30.4% lower energy consumption compared to CMOS-ASIC and recent pipelined domain wall (DW) AES implementations, respectively. In addition, the AES Energy-Delay Product (EDP) can show 15.1% and 6.1% improvements compared to the DW-AES and CMOS-ASIC implementations, respectively.more » « less