skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Bagherzadeh, Nader"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we propose an energy-efficient reconfigurable platform for in-memory processing based on novel 4-terminal spin Hall effect-driven domain wall motion devices that could be employed as both non-volatile memory cell and in-memory logic unit. The proposed designs lead to unity of memory and logic. The device to system level simulation results show that, with 28% area increase in memory structure, the proposed in-memory processing platform achieves a write energy ~15.6 fJ/bit with 79% reduction compared to that of SOT-MRAM counterpart while keeping the identical 1ns writing speed. In addition, the proposed in-memory logic scheme improves the operating energy by 61.3%, as compared with the recent non-volatile in-memory logic designs. An extensive reliability analysis is also performed over the proposed circuits. We employ Advanced Encryption Standard (AES) algorithm as a case study to elucidate the efficiency of the proposed platform at application level. Simulation results exhibit that the proposed platform can show up to 75.7% and 30.4% lower energy consumption compared to CMOS-ASIC and recent pipelined domain wall (DW) AES implementations, respectively. In addition, the AES Energy-Delay Product (EDP) can show 15.1% and 6.1% improvements compared to the DW-AES and CMOS-ASIC implementations, respectively. 
    more » « less