- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Rahman, Md Tauhidur (3)
-
Ray, Biswajit (3)
-
Bahar Talukder, B. M. (2)
-
Bahar Talukder, B M (1)
-
Forte, Domenic (1)
-
Kerns, Joseph (1)
-
Menon, Vineetha (1)
-
Morris, Thomas (1)
-
Neal, Tempestt (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Due to globalization in the semiconductor supply chain, counterfeit dynamic random-access memory (DRAM) chips/modules have been spreading worldwide at an alarming rate. Deploying counterfeit DRAM modules into an electronic system can severely affect security and reliability domains because of their sub-standard quality, poor performance, and shorter life span. Besides, studies suggest that a counterfeit DRAM can be more vulnerable to sophisticated attacks. However, detecting counterfeit DRAMs is very challenging because of their nature and ability to pass the initial testing. In this paper, we propose a technique to identify the DRAM origin (i.e., the origin of the manufacturer and the specification of individual DRAM) to detect and prevent counterfeit DRAM modules. A silicon evaluation shows that the proposed method reliably identifies off-the-shelf DRAM modules from three major manufacturers.more » « less
-
Bahar Talukder, B. M.; Ray, Biswajit; Forte, Domenic; Rahman, Md Tauhidur (, IEEE Access)
-
Bahar Talukder, B M; Kerns, Joseph; Ray, Biswajit; Morris, Thomas; Rahman, Md Tauhidur (, Exploiting DRAM Latency Variations for Generating True Random Numbers)True random number generator (TRNG) plays a vital role in a variety of security applications and protocols. The security and privacy of an asset rely on encryption, which solely depends on the quality of random numbers. Memory chips are widely used for generating random numbers because of their prevalence in modern electronic systems. Unfortunately, existing Dynamic Random-access Memory (DRAM)-based TRNGs produce random numbers with either limited entropy or poor throughput. In this paper, we propose a DRAM-latency based TRNG that generates high-quality random numbers. The silicon results from Samsung and Micron DDR3 DRAM modules show that our proposed DRAM-latency based TRNG is robust (against different operating conditions and environmental variations) and acceptably fast.more » « less
An official website of the United States government

Full Text Available