skip to main content


Search for: All records

Creators/Authors contains: "Bahoura, Messaoud"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2025
  2. Thin-film transparent heaters (TFTHs) are gaining popularity in optoelectronics and a variety of domestic applications, including smart windows, car defrosters, and other devices. The deposition and characterization of TFTHs made of gallium-doped zinc oxide (GZO) are presented in this work. GZO thin films were deposited via pulsed laser deposition on glass substrates with varying oxygen partial pressures from 0 to 10 mTorr during deposition. The samples demonstrated very low sheet resistance values between 5 and 17 Ω/sq from 0 to 10 mTorr, respectively. UV/vis transmission spectra revealed that TFTHs have a high optical transparency above 80%. GZO-based TFTHs demonstrated a consistent and repeatable joule heating effect, with temperatures reaching 76 °C with a low input voltage of 10 V. This research could guide the future use of GZO as a transparent conducting oxide material for many potential cost-effective applications from low-powered electronics to lightweight and wearable devices.

     
    more » « less
  3. A series of different high κ dielectrics such as HfO2, ZrO2, and Al2O3 thin films were studied as an alternative material for the possible replacement of traditional SiO2. These large areas, as well as conformal dielectrics thin films, were grown by the atomic layer deposition technique on a p-type silicon substrate at two different deposition temperatures (150 and 250 °C). Atomic force microscopic study reveals that the surface of the films is very smooth with a measured rms surface roughness value of less than 0.4 nm in some films. After the deposition of the high κ layer, a top metal electrode was deposited onto it to fabricate metal oxide semiconductor capacitor (MOSCAP) structures. The I–V curve reveals that the sample growth at high temperatures exhibits a high resistance value and lower leakage current densities. Frequency-dependent (100 kHz to 1 MHz) C–V characteristics of the MOSCAPs were studied steadily. Furthermore, we have prepared a metal oxide semiconductor field-effect transistor device with Al-doped ZnO as a channel material, and the electrical characteristic of the device was studied. The effect of growth temperature on the structure, surface morphology, crystallinity, capacitance, and dielectric properties of the high κ dielectrics was thoroughly analyzed through several measurement techniques, such as XRD, atomic force microscopy, semiconductor parameter analysis, and ultraviolet-visible spectroscopy.

     
    more » « less
  4. Abstract

    The drawbacks of common anodes in lithium-ion batteries (LIBs) and hybrid supercapacitors (HSCs), such as the high voltage plateau of Li4Ti5O12(1.55 V vs. Li/Li+) and the moderate capacity of graphite (372 mAh-g-1), have established a need for better materials. Conversion materials, and in particular iron oxide and CaFe2O4(CFO), have amassed recent attention as potential anode replacements. In this study, we evaluate the material and electrochemical effects of the solution combustion synthesis (SCS) of porous CFO across novel fuel-to-oxidizer ratios and calcination temperatures. We demonstrate that nearly doubling the amount of fuel used during synthesis increases capacities between 120 and 150% at high current densities (~ 1000 mA-g-1) and across 500 additional charging-discharging cycles, an effect brought on in part by enhanced compositional purity in these samples. However, in order to ensure long-term cyclic stability, it is necessary to also calcine porous CFO to 900 °C to enhance crystallite size, particle size and spacing, and compositional purity.

     
    more » « less
  5. Abstract

    Combining two materials in a nanoscale level can create a composite with new functionalities and improvements in their physical and chemical properties. Here we present a high-throughput approach to produce a nanocomposite consisting of metal nanoparticles and semiconductor oxide nanostructures. Volmer-Weber growth, though unfavorable for thin films, promotes nucleation of dense and isolated metal nanoparticles on crystalline oxide nanostructures, resulting in new material properties. We demonstrate such a growth of Au nanoparticles on SnO2nanostructures and a remarkable sensitivity of the nanocomposite for detecting traces of analytes in surface enhanced Raman spectroscopy. Au nanoparticles with tunable size enable us to modify surface wettability and convert hydrophilic oxide surfaces into super-hydrophobic with contact angles over 150°. We also find that charge injection through electron beam exposure shows the same effect as photo-induced charge separation, providing an extra Raman enhancement up to an order of magnitude.

     
    more » « less
  6. Abstract

    Large area highly crystalline MoS2and WS2thin films were successfully grown on different substrates using radio-frequency magnetron sputtering technique. Structural, morphological and thermoelectric transport properties of MoS2,and WS2thin films have been investigated systematically to fabricate high-efficient thermal energy harvesting devices. X-ray diffraction data revealed that crystallites of MoS2and WS2films are highly oriented in 002 plane with uniform grain size distribution confirmed through atomic force microscopy study. Surface roughness increases with substrate temperature and it plays a big role in electron and phonon scattering. Interestingly, MoS2films also display low thermal conductivity at room temperature and strongly favors achievement of higher thermoelectric figure of merit value of up to 1.98. Raman spectroscopy data shows two distinct MoS2vibrational modes at 380 cm−1for E12gand 410 cm−1for A1g. Thermoelectric transport studies further demonstrated that MoS2films show p-type thermoelectric characteristics, while WS2is an n-type material. We demonstrated high efficient pn-junction thermoelectric generator device for waste heat recovery and cooling applications.

     
    more » « less