Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Due to fiber swelling, textile fabrics containing hygroscopic fibers tend to decrease pore size under wet or increasing humidity and moisture conditions, the reverse being true. Nevertheless, for personal thermal regulation and comfort, the opposite is desirable, namely, increasing the fabric pore size under increasing humid and sweating conditions for enhanced ventilation and cooling, and a decreased pore size under cold and dry conditions for heat retention. This paper describes a novel approach to create such an unconventional fabric by emulating the structure of the plant leaf stomata by designing a water responsive polymer system in which the fabric pores increase in size when wet and decrease in size when dry. The new fabric increases its moisture permeability over 50% under wet conditions. Such a water responsive fabric can find various applications including smart functional clothing and sportswear. Graphical Abstractmore » « less
-
null (Ed.)Artificial muscles based on stimuli-responsive polymers usually exhibit mechanical compliance, versatility, and high power-to-weight ratio, showing great promise to potentially replace conventional rigid motors for next-generation soft robots, wearable electronics, and biomedical devices. In particular, thermomechanical liquid crystal elastomers (LCEs) constitute artificial muscle-like actuators that can be remotely triggered for large stroke, fast response, and highly repeatable actuations. Here, we introduce a digital light processing (DLP)–based additive manufacturing approach that automatically shear aligns mesogenic oligomers, layer-by-layer, to achieve high orientational order in the photocrosslinked structures; this ordering yields high specific work capacity (63 J kg −1 ) and energy density (0.18 MJ m −3 ). We demonstrate actuators composed of these DLP printed LCEs’ applications in soft robotics, such as reversible grasping, untethered crawling, and weightlifting. Furthermore, we present an LCE self-sensing system that exploits thermally induced optical transition as an intrinsic option toward feedback control.more » « less
-
Abstract Conventional strain gauges are not designed for accurate measurement over the large range of deformations possible in compliant textiles. The thin, lightweight, and flexible nature of textiles also makes it challenging to attach strain gauges in a way that does not affect the mechanical properties. In this manuscript, soft, highly extensible fibers that propagate light (i.e., stretchable lightguides) are stitched as a strain gauge to map the deformation of a nylon parachute textile under tension. When under load, these fiber optic strain gauges propagate less light, and this strain‐induced light modulation is used to accurately (absolute error≈2.93%; Std. Dev.: 3.02%) measure strain in the <30% range before these textiles fail. This system has directionality; strain in parallel to the sensor results in little light attenuation while perpendicular loading shows high sensitivity (Gauge factor⊥≈24.8 and Gauge factor||≈0.05 at the first 1% strain). Structural and optical simulations are coupled to demonstrate that load transfer on the fiber optic by the stitchwork is the dominating cause of signal modulation. To further validate the hypotheses, digital image correlation was used under dynamic loading conditions to show that these sensors do not significantly affect the mechanical properties.
-
Abstract Since the modern concepts for virtual and augmented reality are first introduced in the 1960's, the field has strived to develop technologies for immersive user experience in a fully or partially virtual environment. Despite the great progress in visual and auditory technologies, haptics has seen much slower technological advances. The challenge is because skin has densely packed mechanoreceptors distributed over a very large area with complex topography; devising an apparatus as targeted as an audio speaker or television for the localized sensory input of an ear canal or iris is more difficult. Furthermore, the soft and sensitive nature of the skin makes it difficult to apply solid state electronic solutions that can address large areas without causing discomfort. The maturing field of soft robotics offers potential solutions toward this challenge. In this article, the definition and history of virtual (VR) and augmented reality (AR) is first reviewed. Then an overview of haptic output and input technologies is presented, opportunities for soft robotics are identified, and mechanisms of intrinsically soft actuators and sensors are introduced. Finally, soft haptic output and input devices are reviewed with categorization by device forms, and examples of soft haptic devices in VR/AR environments are presented.
-
Silica-based distributed fiber-optic sensor (DFOS) systems have been a powerful tool for sensing strain, pressure, vibration, acceleration, temperature, and humidity in inextensible structures. DFOS systems, however, are incompatible with the large strains associated with soft robotics and stretchable electronics. We develop a sensor composed of parallel assemblies of elastomeric lightguides that incorporate continuum or discrete chromatic patterns. By exploiting a combination of frustrated total internal reflection and absorption, stretchable DFOSs can distinguish and measure the locations, magnitudes, and modes (stretch, bend, or press) of mechanical deformation. We further demonstrate multilocation decoupling and multimodal deformation decoupling through a stretchable DFOS–integrated wireless glove that can reconfigure all types of finger joint movements and external presses simultaneously, with only a single sensor in real time.
-
Abstract This article introduces a simple two‐stage method to synthesize and program a photomechanical elastomer (PME) for light‐driven artificial muscle‐like actuations in soft robotics. First, photochromic azobenzene molecules are covalently attached to a polyurethane backbone via a two‐part step‐growth polymerization. Next, mechanical alignment is applied to induce anisotropic deformations in the PME‐actuating films. Cross‐linked through dynamic hydrogen bonds, the PMEs also possess autonomic self‐healing properties without external energy input. This self‐healing allows for a single alignment step of the PME film and subsequent “cut and paste” assembly for multi‐axis actuation of a self‐folded soft‐robotic gripper from a single degree of freedom optical input.