skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Baig, Furqan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2026
  2. Free, publicly-accessible full text available July 18, 2026
  3. Free, publicly-accessible full text available December 1, 2025
  4. Understanding urban heat exposure dynamics is critical for public health, urban management, and climate change resilience. Near real-time analysis of urban heat enables quick decision-making and timely resource allocation, thereby enhancing the well-being of urban residents, especially during heatwaves or electricity shortages. To serve this purpose, we develop a cyberGIS framework to analyze and visualize human sentiments of heat exposure dynamically based on near real-time location-based social media (LBSM) data. Large volumes and low-cost LBSM data, together with a content analysis algorithm based on natural language processing are used effectively to generate near real-time heat exposure maps from human sentiments on social media at both city and national scales with km spatial resolution and census tract spatial unit. We conducted a case study to visualize and analyze human sentiments of heat exposure in Chicago and the United States in September 2021. Enabled with high-performance computing, dynamic visualization of heat exposure is achieved with fine spatiotemporal scales while heat exposure detected from social media data can be used to understand heat exposure from a human perspective and allow timely responses to extreme heat. 
    more » « less
  5. CyberGIS—geographic information science and systems (GIS) based on advanced cyberinfrastructure—is becoming increasingly important to tackling a variety of socio-environmental problems like climate change, disaster management, and water security. While recent advances in high-performance computing (HPC) have the potential to help address these problems, the technical knowledge required to use HPC has posed challenges to many domain experts. In this paper, we present CyberGIS-Compute: a geospatial middleware tool designed to democratize HPC access for solving diverse socio-environmental problems. CyberGIS-Compute does this by providing a simple user interface in Jupyter, streamlining the process of integrating domain-specific models with HPC, and establishing a suite of APIs friendly to domain experts. 
    more » « less
  6. Geospatial research and education have become increasingly dependent on cyberGIS to tackle computation and data challenges. However, the use of advanced cyberinfrastructure resources for geospatial research and education is extremely challenging due to both high learning curve for users and high software development and integration costs for developers, due to limited availability of middleware tools available to make such resources easily accessible. This tutorial describes CyberGIS-Compute as a middleware framework that addresses these challenges and provides access to high-performance resources through simple easy to use interfaces. The CyberGIS-Compute framework provides an easy to use application interface and a Python SDK to provide access to CyberGIS capabilities, allowing geospatial applications to easily scale and employ advanced cyberinfrastructure resources. In this tutorial, we will first start with the basics of CyberGISJupyter and CyberGIS-Compute, then introduce the Python SDK for CyberGIS-Compute with a simple Hello World example. Then, we will take multiple real-world geospatial applications use-cases like spatial accessibility and wildfire evacuation simulation using agent based modeling. We will also provide pointers on how to contribute applications to the CyberGIS-Compute framework. 
    more » « less
  7. Text correction on mobile devices usually requires precise and repetitive manual control. In this paper, we present EyeSayCorrect, an eye gaze and voice based hands-free text correction method for mobile devices. To correct text with EyeSayCorrect, the user first utilizes the gaze location on the screen to select a word, then speaks the new phrase. EyeSayCorrect would then infer the user’s correction intention based on the inputs and the text context. We used a Bayesian approach for determining the selected word given an eye-gaze trajectory. Given each sampling point in an eye-gaze trajectory, the posterior probability of selecting a word is calculated and accumulated. The target word would be selected when its accumulated interest is larger than a threshold. The misspelt words have higher priors. Our user studies showed that using priors for misspelt words reduced the task completion time up to 23.79% and the text selection time up to 40.35%, and EyeSayCorrect is a feasible hands-free text correction method on mobile devices. 
    more » « less
  8. null (Ed.)