Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 3, 2026
-
Benjamin, Paaßen; Carrie, Demmans Epp (Ed.)The educational data mining community has extensively investigated affect detection in learning platforms, finding associations between affective states and a wide range of learning outcomes. Based on these insights, several studies have used affect detectors to create interventions tailored to respond to when students are bored, confused, or frustrated. However, these detector-based interventions have depended on detecting affect when it occurs and therefore inherently respond to affective states after they have begun. This might not always be soon enough to avoid a negative experience for the student. In this paper, we aim to predict students' affective states in advance. Within our approach, we attempt to determine the maximum prediction window where detector performance remains sufficiently high, documenting the decay in performance when this prediction horizon is increased. Our results indicate that it is possible to predict confusion, frustration, and boredom in advance with performance over chance for prediction horizons of 120, 40, and 50 seconds, respectively. These findings open the door to designing more timely interventions.more » « lessFree, publicly-accessible full text available July 12, 2025
-
The artificial intelligence in education (AIED) community has produced technologies that are widely used to support learning, teaching, assessment, and administration. This work has successfully enhanced test scores, course grades, skill acquisition, comprehension, engagement, and related outcomes. However, the prevailing approach to adaptive and personalized learning has two main steps. First, the process involves detecting the areas of knowledge and competencies where students are deficient. This process also identifies when or how a student is considered “at risk” or in some way “lacking.” Second, the approach involves providing timely, individualized assistance to address these deficiencies. However, a considerable body of research outside our field has established that such deficit framing, by itself, leads to reactive and less productive strategies. In deficit-based frameworks, powerful student strengths, skills, and schemas—their assets—are not explicitly leveraged...more » « less
-
In past work, time management interventions involving prompts, alerts, and planning tools have successfully nudged students in online courses, leading to higher engagement and improved performance. However, few studies have investigated the effectiveness of these interventions over time, understanding if the effectiveness maintains or changes based on dosage (i.e., how often an intervention is provided). In the current study, we conducted a randomized controlled trial to test if the effect of a time management intervention changes over repeated use. Students at an online computer science course were randomly assigned to receive interventions based on two schedules (i.e., high-dosage vs. low-dosage). We ran a two-way mixed ANOVA, comparing students' assignment start time and performance across several weeks. Unexpectedly, we did not find a significant main effect from the use of the intervention, nor was there an interaction effect between the use of the intervention and week of the course.more » « less
-
Massive Open Online Courses (MOOCs) have increased the accessibility of quality educational content to a broader audience across a global network. They provide access for students to material that would be difficult to obtain locally, and an abundance of data for educational researchers. Despite the international reach of MOOCs, however, the majority of MOOC research does not account for demographic differences relating to the learners' country of origin or cultural background, which have been shown to have implications on the robustness of predictive models and interventions. This paper presents an exploration into the role of nation-level metrics of culture, happiness, wealth, and size on the generalizability of completion prediction models across countries. The findings indicate that various dimensions of culture are predictive of cross-country model generalizability. Specifically, learners from indulgent, collectivist, uncertainty-accepting, or short-term oriented, countries produce more generalizable predictive models of learner completion.more » « less