skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bal, Sourayan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract An ultra‐fast electrochemical capacitor (EC) designed for efficient ripple current smoothing was fabricated using vertically oriented MoS2(VOM) nanoflakes deposited on freestanding carbonized cellulose (CC) sheets as electrodes. The daily used cellulose tissue sheets were transformed into electrode scaffolds through a rapid pyrolysis process within a preheated furnace, on which VOM nanoflakes were formed in a conventional hydrothermal process. With these ~10 μm thick VOM‐CC electrodes, ultrafast ECs with tunable frequency response and specific capacitance density were fabricated. The ECs with a cell‐level areal capacitance density of 0.8 mF/cm2at 120 Hz were demonstrated for ripple current filtering from 60 Hz to 60 kHz. At a lower frequency response level, EC cell with a large capacitance density of 4.8 mF/cm2was also demonstrated. With the facile and easily scaled up process to producing the nanostructured electrode, the miniaturized VOM‐CC based ECs have the potential to substitute the bulky aluminum electrolytic capacitors for current smoothing and pulse power applications. 
    more » « less