- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Baladi, Viviane (2)
-
Demers, Mark F. (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
& Ayala, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
For any finite horizon Sinai billiard map \begin{document}$ T $$\end{document} on the two-torus, we find \begin{document}$$ t_*>1 $$\end{document} such that for each \begin{document}$$ t\in (0,t_*) $$\end{document} there exists a unique equilibrium state \begin{document}$$ \mu_t $$\end{document} for \begin{document}$$ - t\log J^uT $$\end{document}, and \begin{document}$$ \mu_t $$\end{document} is \begin{document}$$ T $$\end{document}-adapted. (In particular, the SRB measure is the unique equilibrium state for \begin{document}$$ - \log J^uT $$\end{document}.) We show that \begin{document}$$ \mu_t $$\end{document} is exponentially mixing for Hölder observables, and the pressure function \begin{document}$$ P(t) = \sup_\mu \{h_\mu -\int t\log J^uT d \mu\} $$\end{document} is analytic on \begin{document}$$ (0,t_*) $$\end{document}. In addition, \begin{document}$$ P(t) $$\end{document} is strictly convex if and only if \begin{document}$$ \log J^uT $$\end{document} is not \begin{document}$$ \mu_t $$\end{document}-a.e. cohomologous to a constant, while, if there exist \begin{document}$$ t_a\ne t_b $$\end{document} with \begin{document}$$ \mu_{t_a} = \mu_{t_b} $$\end{document}, then \begin{document}$$ P(t) $$\end{document} is affine on \begin{document}$$ (0,t_*) $$\end{document}. An additional sparse recurrence condition gives \begin{document}$$ \lim_{t\downarrow 0} P(t) = P(0) $$\end{document}$.more » « less
-
Baladi, Viviane; Demers, Mark F. (, Journal of the American Mathematical Society)
An official website of the United States government
