Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In environments with prodigious numbers of neutrinos, such as core-collapse supernovae, neutron star mergers, or the early Universe, neutrino-neutrino interactions are dynamically significant. They can dominate neutrino flavor evolution and force it to be nonlinear, causing collective neutrino oscillations. Such collective oscillations have been studied numerically, for systems with up to millions of neutrinos, using mean-field or one-particle effective approximations. However, such a system of interacting neutrinos is a quantum many-body system, wherein quantum correlations could play a significant role in the flavor evolution—thereby motivating the exploration of many-body treatments that follow the time evolution of these correlations. In many-body flavor evolution calculations with two neutrino flavors, the emergence of spectral splits in the neutrino energy distributions has been found to be correlated with the degree of quantum entanglement across the spectrum. In this work, for the first time, we investigate the emergence of spectral splits in the three-flavor many-body collective neutrino oscillations. We find that the emergence of spectral splits resembles the number and location found in the mean-field approximation but not in the width. Moreover, unlike in the two-flavor many-body calculations, we find that additional degrees of freedom make it more difficult to establish a correlation between the location of the spectral splits and the degree of quantum entanglement across the neutrino energy spectrum. The observation from the two-flavor case, that neutrinos nearest to the spectral split frequency exhibit the highest level of entanglement, is more difficult to ascertain in the three-flavor case because of the presence of multiple spectral splits across different pairwise combinations of flavor and/or mass states. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available March 1, 2026
-
Using tellurium dioxide as a target, we calculate uncertainties on 90% upper confidence limits of Galilean effective field theory (Galilean EFT) couplings to a weakly interacting massive particle (WIMP) dark matter candidate due to uncertainties in nuclear shell models. We find that these uncertainties in naturally occurring tellurium isotopes are comparable across the different Galilean EFT couplings to uncertainties in xenon, with some reaching over 100%. We also consider the effect these nuclear uncertainties have on estimates of the annual modulation of dark matter from these searches, finding that the uncertainties in the modulation amplitude are proportional to the nonmodulating upper confidence limit uncertainties. We also show that the determination of the modulation phase is insensitive to changes in the nuclear model for a given isotope.more » « lessFree, publicly-accessible full text available March 1, 2026
-
Free, publicly-accessible full text available March 1, 2026
-
The phase-space approach (PSA), which was originally introduced in Lacroix [] to describe neutrino flavor oscillations for interacting neutrinos emitted from stellar objects is extended to describe arbitrary numbers of neutrino beams. The PSA is based on mapping the quantum fluctuations into a statistical treatment by sampling initial conditions followed by independent mean-field evolution. A new method is proposed to perform this sampling that allows treating an arbitrary number of neutrinos in each neutrino beams. We validate the technique successfully and confirm its predictive power on several examples where a reference exact calculation is possible. We show that it can describe many-body effects, such as entanglement and dissipation induced by the interaction between neutrinos. Due to the complexity of the problem, exact solutions can only be calculated for rather limited cases, with a limited number of beams and/or neutrinos in each beam. The PSA approach considerably reduces the numerical cost and provides an efficient technique to accurately simulate arbitrary numbers of beams. Examples of PSA results are given here, including up to 200 beams with time-independent or time-dependent Hamiltonians. We anticipate that this approach will be useful to bridge exact microscopic techniques with more traditional transport theories used in neutrino oscillations. It will also provide important reference calculations for future quantum computer applications where other techniques are not applicable to classical computers. Published by the American Physical Society2024more » « lessFree, publicly-accessible full text available November 1, 2025
-
We calculate the spin-flavor precession (SFP) of Dirac neutrinos induced by strong magnetic fields and finite neutrino magnetic moments in dense matter. As found in the case of Majorana neutrinos, the SFP of Dirac neutrinos is enhanced by the large magnetic field potential and suppressed by large matter potentials composed of the baryon density and the electron fraction. The SFP is possible irrespective of the large baryon density when the electron fraction is close to 1/3. The diagonal neutrino magnetic moments that are prohibited for Majorana neutrinos enable the spin precession of Dirac neutrinos without any flavor mixing. With supernova hydrodynamics simulation data, we discuss the possibility of the SFP of both Dirac and Majorana neutrinos in core-collapse supernovae. The SFP of Dirac neutrinos occurs at a radius where the electron fraction is 1/3. The required magnetic field of the proto-neutron star for the SFP is a few 10^{14} G at any explosion time. For the Majorana neutrinos, the required magnetic field fluctuates from 10^{13} G to 10^{15} G. Such a fluctuation of the magnetic field is more sensitive to the numerical scheme of the neutrino transport in the supernova simulation.more » « less
-
Probing self-interacting sterile neutrino dark matter with the diffuse supernova neutrino backgroundThe neutrinos in the diffuse supernova neutrino background (DSNB) travel over cosmological distances and this provides them with an excellent opportunity to interact with dark relics. We show that a cosmologically significant relic population of keV-mass sterile neutrinos with strong self-interactions could imprint their presence in the DSNB. The signatures of the self-interactions would be “dips” in the otherwise smooth DSNB spectrum. Upcoming large-scale neutrino detectors, for example Hyper-Kamiokande, have a good chance of detecting the DSNB and these dips. If no dips are detected, this method serves as an independent constraint on the sterile neutrino self-interaction strength and mixing with active neutrinos. We show that relic sterile neutrino parameters that evade x-ray and structure bounds may nevertheless be testable by future detectors like TRISTAN, but may also produce dips in the DSNB which could be detectable. Such a detection would suggest the existence of a cosmologically significant, strongly self-interacting sterile neutrino background, likely embedded in a richer dark sector.more » « less