skip to main content


Search for: All records

Creators/Authors contains: "Baldocchi, Dennis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2024
  2. Across forests, photosynthesis and woody growth respond to different climate cues. 
    more » « less
  3. null (Ed.)
    Eddy covariance measurement systems provide direct observation of the exchange of greenhouse gases between ecosystems and the atmosphere, but have only occasionally been intentionally applied to quantify the carbon dynamics associated with specific climate mitigation strategies. Natural climate solutions (NCS) harness the photosynthetic power of ecosystems to avoid emissions and remove atmospheric carbon dioxide (CO2), sequestering it in biological carbon pools. In this perspective, we aim to determine which kinds of NCS strategies are most suitable for ecosystem-scale flux measurements and how these measurements should be deployed for diverse NCS scales and goals. We find that ecosystem-scale flux measurements bring unique value when assessing NCS strategies characterized by inaccessible and hard-to-observe carbon pool changes, important non-CO2 greenhouse gas fluxes, the potential for biophysical impacts, or dynamic successional changes. We propose three deployment types for ecosystem-scale flux measurements at various NCS scales to constrain wide uncertainties and chart a workable path forward: “pilot”, “upscale”, and “monitor”. Together, the integration of ecosystem-scale flux measurements by the NCS community and the prioritization of NCS measurements by the flux community, have the potential to improve accounting in ways that capture the net impacts, unintended feedbacks, and on-the-ground specifics of a wide range of emerging NCS strategies. 
    more » « less
  4. Abstract

    Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We firstdefineeach of the major C pools and fluxes and providerationalefor their importance to wetland C dynamics. For each approach, we clarifywhatcomponent of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such aswhereandwhenan approach is typically used,whocan conduct the measurements (expertise, training requirements), andhowapproaches are conducted, including considerations on equipment complexity and costs. Finally, we reviewkey covariatesandancillary measurementsthat enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions.

     
    more » « less
  5. null (Ed.)