skip to main content


Search for: All records

Creators/Authors contains: "Banerjee, Parag"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Phase change materials (PCMs) are important building blocks in solid-state memory and photonic devices. Solution-based processing promises large-area, cost-effective, conformal coating of optical PCMs (O-PCMs) for photonic applications. In this work, a solution processing route was developed for Ge2Sb2Se4Te1(GSST), a target PCM of interest due to its large optical contrast, broadband transparency, and improved glass-forming capability. An alkahest solvent mixture of ethanedithiol and ethylenediamine was used as a solvent system to fabricate solution-derived GSST thin films and films from these solutions were prepared and characterized using SEM, XRD, and Raman spectroscopy.

     
    more » « less
  2. Real-time detection of intermediate species and final products at the surface and near-surface in interfacial solid–gas reactions is critical for an accurate understanding of heterogeneous reaction mechanisms. In this article, an experimental method that can simultaneously monitor the ultrafast dynamics at the surface and above the surface in photoinduced heterogeneous reactions is presented. This method relies on a combination of mass spectrometry and femtosecond pump–probe spectroscopy. As a model system, the photoinduced reaction of methyl iodide on and above a cerium oxide surface is investigated. The species that are simultaneously detected from the surface and gas-phase present distinct features in the mass spectra, such as a sharp peak followed by an adjacent broad shoulder. The sharp peak is attributed to the species detected from the surface, while the broad shoulder is due to the detection of gas-phase species above the surface, as confirmed by multiple experiments. By monitoring the evolution of the sharp peak and broad shoulder as a function of the pump–probe time delay, transient signals are obtained that describe the ultrafast photoinduced reaction dynamics of methyl iodide on the surface and in the gas-phase. Finally, SimION simulations are performed to confirm the origin of the ions produced on the surface and in the gas-phase.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  3. Free, publicly-accessible full text available August 12, 2025
  4. The development of functional chalcogenide optical phase change materials holds significant promise for advancing optics and photonics applications. Our comprehensive investigation into the solution processing of Sb2Se3 thin films presents a systematic approach from solvent exploration to substrate coating through drop-casting methods and heat treatments. By employing characterization techniques such as scanning electron microscopy, dynamic light scattering, energy-dispersive X-ray spectroscopy, Raman spectroscopy, and X-ray diffraction, we reveal crucial insights into the structural, compositional, and morphological properties of the films as well as demonstrated techniques for control over these features to ensure requisite optical quality. Our findings, compared with currently reported deposition techniques, highlight the potential of solution deposition as a route for scalable Sb2Se3 film processing. 
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  5. Real-time detection of intermediate species and final products at the surface and near-surface in interfacial solid-gas reactions is critical for an accurate understanding of heterogeneous reaction mechanisms. In this contribution, an experimental method that can simultaneously monitor the ultrafast dynamics at the surface and above the surface in photoinduced heterogeneous reactions is presented. The method relies on a combination of mass spectrometry and femtosecond pump-probe spectroscopy. As a model system, the photoinduced reaction of methyl iodide on and above a cerium oxide surface is investigated. The species that are simultaneously detected from the surface and gas-phase present distinct features in the mass spectra, such as a sharp peak followed by an adjacent broad shoulder. The sharp peak is attributed to the species detected from the surface while the broad shoulder is due to the detection of gas-phase species above the surface, as confirmed by multiple experiments. By monitoring the evolution of the sharp peak and broad shoulder as a function of the pump-probe time delay, transient signals are obtained that describe the ultrafast photoinduced reaction dynamics of methyl iodide on the surface and in gas-phase. Finally, SimION simulations are performed to confirm the origin of the ions produced on the surface and gas-phase.

     
    more » « less
    Free, publicly-accessible full text available May 9, 2025
  6. Atomic layer deposition (ALD) of ruthenium (Ru) is being investigated for next generation interconnects and conducting liners for copper metallization. However, integration of ALD Ru with diffusion barrier refractory metal nitrides, such as tantalum nitride (TaN), continues to be a challenge due to its slow nucleation rates. Here, we demonstrate that an ultraviolet-ozone (UV-O3) pretreatment of TaN leads to an oxidized surface that favorably alters the deposition characteristics of ALD Ru from islandlike to layer-by-layer growth. The film morphology and properties are evaluated via spectroscopic ellipsometry, atomic force microscopy, electrical sheet resistance measurements, and thermoreflectance. We report a 1.83 nm continuous Ru film with a roughness of 0.19 nm and a sheet resistance of 10.8 KΩ/□. The interface chemistry between TaN and Ru is studied by x-ray photoelectron spectroscopy. It is shown that UV-O3 pretreatment, while oxidizing TaN, enhances Ru film nucleation and limits further oxidation of the underlying TaN during ALD. An oxygen “gettering” mechanism by TaN is proposed to explain reduced oxygen content in the Ru film and higher electrical conductivity compared to Ru deposited on native-TaN. This work provides a simple and effective approach using UV-O3 pretreatment for obtaining sub-2 nm, smooth, and conducting Ru films on TaN surfaces.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  7. High harmonic generation (HHG) in solids has been identified as a promising mechanism for light source generation and for spectroscopy of materials. HHG from bulk solids, however, often suffers from nonlinear propagation effects, resulting in a loss of spectral coherence and the skewing of spectroscopic measurements. Here, we study HHG in epitaxial ZnO thin films grown on Al2O3substrates using atomic layer deposition. We find that the HHG emission consists of narrow spectral peaks, in contrast to those seen in bulk, and that the dependence of the harmonic yield on the film thickness differs for above-gap and below-gap harmonics, which can be understood from analytical models based on the linear and nonlinear response of the medium. The measured harmonic spectra depend qualitatively on the preparation of the films, with as-grown films generating even harmonic orders, which are absent in annealed films. The results are interpreted using transmission electron microscopy measurements, which indicate different morphologies for the as-grown and annealed films.

     
    more » « less
  8. Understanding the origin of enhanced catalytic activity is critical to heterogeneous catalyst design. This is especially important for non-noble metal-based catalysts, notably metal oxides, which have recently emerged as viable candidates for numerous thermal catalytic processes. For thermal catalytic reduction/hydrogenation using metal oxide nanoparticles, enhanced catalytic performance is typically attributed to an increased surface area and the presence of oxygen vacancies. Concomitantly, the treatments that induce oxygen vacancies also impact other material properties, such as the microstrain, crystallinity, oxidation state, and particle shape. Herein, multivariate statistical analysis is used to disentangle the impact of material properties of CuO nanoparticles on catalytic rates for nitroaromatic and methylene blue reduction. The impact of the microstrain, shape, and Cu(0) atomic percent is demonstrated for these reactions; furthermore, a protocol for correlating material property parameters to catalytic efficiency is presented, and the importance of catalyst design for these broadly utilized probe reactions is highlighted. 
    more » « less
    Free, publicly-accessible full text available January 12, 2025
  9. We study high-order harmonic generation from epitaxial ZnO films grown on Al2O3substrate. We observe a saturation of the harmonic intensity for a film thickness of 30 nm. 
    more » « less