skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Selective and sustainable quinoline hydrogenation with a robust hierarchical catalyst framework
A hierarchical heterogeneous palladium on nickel foam-based catalyst system was demonstrated for the selective hydrogenation of quinoline and quinoline derivatives under low H2pressures, with green solvents (ethanol, ethanol water mixture).  more » « less
Award ID(s):
2424976
PAR ID:
10615969
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Catalysis Science & Technology
ISSN:
2044-4753
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report results from experiments with the quinoline-O2 complex, which was photodissociated using light near 312 nm. Photodissociation resulted in formation of the lowest excited state of oxygen, O2 a 1Δg, which we detected using resonance enhanced multiphoton ionization and velocity map ion imaging. The O2+ ion image allowed for a determination of the center-of-mass translational energy distribution, P(ET), following complex dissociation. We also report results of electronic structure calculations for the quinoline singlet ground state and lowest energy triplet state. From the CCSD/aug-cc-pVDZ//(U)MP2/cc-pVDZ calculations, we determined the lowest energy triplet state to have ππ* electronic character and to be 2.69 eV above the ground state. We also used electronic structure calculations to determine the geometry and binding energy for several quinoline-O2 complexes. The calculations indicated that the most strongly bound complex has a well depth of about 0.11 eV and places the O2 moiety above and approximately parallel to the quinoline ring system. By comparing the experimental P(ET) with the energy for the singlet ground state and the lowest energy triplet state, we concluded that the quinoline product was formed in the lowest energy triplet state. Finally, we found the experimental P(ET) to be in agreement with a Prior translational energy distribution, which suggests a statistical dissociation for the complex. 
    more » « less
  2. Abstract An intramolecular SNAr displacement of oneo‐fluorine atom of ameso‐pentafluorophenyl‐substituted porphyrin metal complex by a neighboring β‐amino functionality generated the correspondingmeso‐fluorophenyl‐substituted metallo‐quinolino[2,3,4‐at]porphyrins that are not accessible using established quinoline‐annulation methodologies. The Cu(II), Ni(II), and Zn(II) complexes were thus prepared. The parent free base quinolino[2,3,4‐at]porphyrin is accessible only by demetallation of the copper or zinc complexes. A strong through‐space NMR‐spectroscopic coupling between the remainingo‐fluorine atoms on the annulatedmeso‐aryl group and the β‐hydrogen atom on the adjacent pyrrole moiety provide a clear spectroscopic signature for the annulation. Quinoline‐annulation alters the optical properties significantly. On account of the presence of the β‐amino functionality, all quinoline‐annulated porphyrins show strong halochromic responses with Brønsted acids and bases, the prerequisite for their potential use in chemosensing applications. 
    more » « less
  3. Metal quinoline complexes were prepared using a quinoline-based proteasome inhibitor (Quin1) and an inactive quinoline ligand (Quin2), and their cytotoxicities are reported towards multiple myeloma-related cell lines. 
    more » « less
  4. Abstract Oxoiron(IV) units are often implicated as intermediates in the catalytic cycles of non‐heme iron oxygenases and oxidases. The most reactive synthetic analogues of these intermediates are supported by tetradentate tripodal ligands withN‐methylbenzimidazole or quinoline donors, but their instability precludes structural characterization. Herein we report crystal structures of two [FeIV(O)(L)]2+complexes supported by pentadentate ligands incorporating these heterocycles, which show longer average Fe–N distances than the complex with only pyridine donors. These longer distances correlate linearly with log k2′ values for O‐ and H‐atom transfer rates, suggesting that weakening the ligand field increases the electrophilicity of the Fe=O center. The sterically bulkier quinoline donors are also found to tilt the Fe=O unit away from a linear N‐Fe=O arrangement by 10°. 
    more » « less
  5. Abstract BackgroundOrganisms frequently experience environmental stresses that occur in predictable patterns and combinations. For wildSaccharomyces cerevisiaeyeast growing in natural environments, cells may experience high osmotic stress when they first enter broken fruit, followed by high ethanol levels during fermentation, and then finally high levels of oxidative stress resulting from respiration of ethanol. Yeast have adapted to these patterns by evolving sophisticated “cross protection” mechanisms, where mild ‘primary’ doses of one stress can enhance tolerance to severe doses of a different ‘secondary’ stress. For example, in many yeast strains, mild osmotic or mild ethanol stresses cross protect against severe oxidative stress, which likely reflects an anticipatory response important for high fitness in nature. ResultsDuring the course of genetic mapping studies aimed at understanding the mechanisms underlying natural variation in ethanol-induced cross protection against H2O2, we found that a key H2O2scavenging enzyme, cytosolic catalase T (Ctt1p), was absolutely essential for cross protection in a wild oak strain. This suggested the absence of other compensatory mechanisms for acquiring H2O2resistance in that strain background under those conditions. In this study, we found surprising heterogeneity across diverse yeast strains in whetherCTT1function was fully necessary for acquired H2O2resistance. Some strains exhibited partial dispensability ofCTT1when ethanol and/or salt were used as mild stressors, suggesting that compensatory peroxidases may play a role in acquired stress resistance in certain genetic backgrounds. We leveraged global transcriptional responses to ethanol and salt stresses in strains with different levels ofCTT1dispensability, allowing us to identify possible regulators of these alternative peroxidases and acquired stress resistance in general. ConclusionsUltimately, this study highlights how superficially similar traits can have different underlying molecular foundations and provides a framework for understanding the diversity and regulation of stress defense mechanisms. 
    more » « less