skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Banerjee, Sanjoy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Various zinc anodes with increasing calcium zincate (0%, 30%, 70%, 100%) were cycled at 50% theoretical Zn utilization to investigate cycle life and estimated cost. Failure mechanisms of majority 70% Zn/30% CaZn anodes are compared with pure CaZn. 
    more » « less
    Free, publicly-accessible full text available August 8, 2025
  2. ABSTRACT: The presence of asphaltene at both fluid−fluid and fluid−solid interfaces has a wide impact on petroleum recovery processes, for example, by stabilizing oil−gas−water dispersions, adsorbing on reservoir rock surfaces and thus changing their wetting properties, and forming deposits in oil−gas production systems. The Yen-Mullins model for asphaltene behavior in bulk fluids provides a framework for understanding a diverse range of phenomena related to the adsorption dynamics of asphaltene at interfaces and how the adsorbed layers are structured. In this work, we address the relatively less explored parameter, which is accounting for the size and shape of the particles on the interfacial properties and emulsion stability. We discuss our investigations of the asphaltene adsorption and its effects, focusing on oil−water interfaces, and propose a lattice-gas model to explain the experimental observations of the interfacial tension and rheology. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)