skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Baniya, Babu Kaji"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The continuous evolution of the IoT paradigm has been extensively applied across various application domains, including air traffic control, education, healthcare, agriculture, transportation, smart home appliances, and others. Our primary focus revolves around exploring the applications of IoT, particularly within healthcare, where it assumes a pivotal role in facilitating secure and real-time remote patient-monitoring systems. This innovation aims to enhance the quality of service and ultimately improve people’s lives. A key component in this ecosystem is the Healthcare Monitoring System (HMS), a technology-based framework designed to continuously monitor and manage patient and healthcare provider data in real time. This system integrates various components, such as software, medical devices, and processes, aimed at improvi1g patient care and supporting healthcare providers in making well-informed decisions. This fosters proactive healthcare management and enables timely interventions when needed. However, data transmission in these systems poses significant security threats during the transfer process, as malicious actors may attempt to breach security protocols.This jeopardizes the integrity of the Internet of Medical Things (IoMT) and ultimately endangers patient safety. Two feature sets—biometric and network flow metric—have been incorporated to enhance detection in healthcare systems. Another major challenge lies in the scarcity of publicly available balanced datasets for analyzing diverse IoMT attack patterns. To address this, the Auxiliary Classifier Generative Adversarial Network (ACGAN) was employed to generate synthetic samples that resemble minority class samples. ACGAN operates with two objectives: the discriminator differentiates between real and synthetic samples while also predicting the correct class labels. This dual functionality ensures that the discriminator learns detailed features for both tasks. Meanwhile, the generator produces high-quality samples that are classified as real by the discriminator and correctly labeled by the auxiliary classifier. The performance of this approach, evaluated using the IoMT dataset, consistently outperforms the existing baseline model across key metrics, including accuracy, precision, recall, F1-score, area under curve (AUC), and confusion matrix results. 
    more » « less
  2. The ubiquity of the Internet plays a pivotal role in connecting individuals and facilitating easy access to various essential services. As of 2022, the International Telecommunication Union (ITU) reports that approximately 5.3 billion people are connected to the internet, underscoring its widespread coverage and indispensability in our daily lives. This expansive coverage enables a myriad of services, including communication, e-banking, e-commerce, online social security access, medical reporting, education, entertainment, weather information, traffic monitoring, online surveys, and more. However, this open platform also exposes vulnerabilities to malicious users who actively seek to exploit weaknesses in the virtual domain, aiming to gain credentials, financial benefits, or reveal critical information through the use of malware. This constant threat poses a serious challenge in safeguarding sensitive information in cyberspace. To address this challenge, we propose the use of ensemble and deep neural network (DNN) based machine learning (ML) techniques to detect malicious intent packets before they can infiltrate or compromise systems and applications. Attackers employ various tactics to evade existing security systems, such as antivirus or intrusion detection systems, necessitating a robust defense mechanism. Our approach involves implementing an ensemble, a collection of diverse classifiers capable of capturing different attack patterns and better generalizing from highly relevant features, thus enhancing protection against a variety of attacks compared to a single classifier. Given the highly unbalanced dataset, the ensemble classifier effectively addresses this condition, and oversampling is also employed to minimize bias toward the majority class. To prevent overfitting, we utilize Random Forest (RF) and the dropout technique in the DNN. Furthermore, we introduce a DNN to assess its ability to recognize complex attack patterns and variations compared to the ensemble approach. Various metrics, such as classification accuracy, precision, recall, F1-score, confusion matrix are utilized to measure the performance of our proposed system, with the aim of outperforming current state-of-the-art intrusion detection systems. 
    more » « less