skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Barbour, William"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Jin, Sheng (Ed.)
    This work considers the sensitivity of commute travel times in US metro areas due to potential changes in commute patterns, for example caused by events such as pandemics. Permanent shifts away from transit and carpooling can add vehicles to congested road networks, increasing travel times. Growth in the number of workers who avoid commuting and work from home instead can offset travel time increases. To estimate these potential impacts, 6-9 years of American Community Survey commute data for 118 metropolitan statistical areas are investigated. For 74 of the metro areas, the average commute travel time is shown to be explainable using only the number of passenger vehicles used for commuting. A universal Bureau of Public Roads model characterizes the sensitivity of each metro area with respect to additional vehicles. The resulting models are then used to determine the change in average travel time for each metro area in scenarios when 25% or 50% of transit and carpool users switch to single occupancy vehicles. Under a 25% mode shift, areas such as San Francisco and New York that are already congested and have high transit ridership may experience round trip travel time increases of 12 minutes (New York) to 20 minutes (San Francisco), costing individual commuters $1065 and $1601 annually in lost time. The travel time increases and corresponding costs can be avoided with an increase in working from home. The main contribution of this work is to provide a model to quantify the potential increase in commute travel times under various behavior changes, that can aid policy making for more efficient commuting. 
    more » « less
    Free, publicly-accessible full text available January 11, 2024
  2. During the Covid-19 pandemic a key role is played by vaccination to combat the virus. There are many possible policies for prioritizing vaccines, and different criteria for optimization: minimize death, time to herd immunity, functioning of the health system. Using an age-structured population compartmental finite-dimensional optimal control model, our results suggest that the eldest to youngest vaccination policy is optimal to minimize deaths. Our model includes the possible infection of vaccinated populations. We apply our model to real-life data from the US Census for New Jersey and Florida, which have a significantly different population structure. We also provide various estimates of the number of lives saved by optimizing the vaccine schedule and compared to no vaccination.

    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)