Agrivoltaic systems that locate crop production and photovoltaic energy generation on the same land have the potential to aid the transition to renewable energy by reducing the competition between food, habitat, and energy needs for land while reducing irrigation requirements. Experimental efforts to date have not adequately developed an understanding of the interaction among local climate, array design and crop selection sufficient to manage trade-offs in system design. This study simulates the energy production, crop productivity and water consumption impacts of agrivoltaic array design choices in arid and semi-arid environments in the Southwestern region of the United States. Using the Penman–Monteith evapotranspiration model, we predict agrivoltaics can reduce crop water consumption by 30%–40% of the array coverage level, depending on local climate. A crop model simulating productivity based on both light level and temperature identifies afternoon shading provided by agrivoltaic arrays as potentially beneficial for shade tolerant plants in hot, dry settings. At the locations considered, several designs and crop combinations exceed land equivalence ratio values of 2, indicating a doubling of the output per acre for the land resource. These results highlight key design axes for agrivoltaic systems and point to a decision support tool for their development.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Tree loss is increasing rapidly due to drought- and heat-related mortality and intensifying fire activity. Consequently, the fate of many forests depends on the ability of juvenile trees to withstand heightened climate and disturbance anomalies. Extreme climatic events, such as droughts and heatwaves, are increasing in frequency and severity, and trees in mountainous regions must contend with these landscape-level climate episodes. Recent research focuses on how mortality of individual tree species may be driven by drought and heatwaves, but how juvenile mortality under these conditions would vary among species spanning an elevational gradient—given concurrent variation in climate, ecohydrology, and physiology–remains unclear. We address this knowledge gap by implementing a growth chamber study, imposing extreme drought with and without a compounding heatwave, for juveniles of five species that span a forested life zones in the Southwestern United States. Overall, the length of a progressive drought required to trigger mortality differed by up to 20 weeks among species. Inclusion of a heatwave hastened mean time to mortality for all species by about 1 week. Lower-elevation species that grow in warmer ambient conditions died earlier (
Pinus ponderosa in 10 weeks,Pinus edulis in 14 weeks) than did higher-elevation species from cooler ambient conditions (Picea engelmannii andPseudotsuga menziesii in 19 weeks, andPinus flexilis in 30 weeks). When exposed to a heatwave in conjunction with drought, mortality advanced significantly only for species from cooler ambient conditions (Pinus flexilis : 2.7 weeks earlier;Pseudotsuga menziesii : 2.0 weeks earlier). Cooler ambient temperatures may have buffered against moisture loss during drought, resulting in longer survival of higher-elevation species despite expected drought tolerance of lower-elevation species due to tree physiology. Our study suggests that droughts will play a leading role in juvenile tree mortality and will most directly impact species at warmer climate thresholds, with heatwaves in tandem with drought potentially exacerbating mortality especially of high elevation species. These responses are relevant for assessing the potential success of both natural and managed reforestation, as differential juvenile survival following episodic extreme events will determine future landscape-scale vegetation trajectories under changing climate. -
Current understanding of the dynamic and slow flow paths that support streamflow in mountain headwater catchments is inhibited by the lack of long-term hydrogeochemical data and the frequent use of short residence time age tracers. To address this, the current study combined the traditional mean transit time and the state-of-the-art fraction of young water ( F yw ) metrics with stable water isotopes and tritium tracers to characterize the dynamic and slow flow paths at Marshall Gulch, a sub-humid headwater catchment in the Santa Catalina Mountains, Arizona, USA. The results show that F yw varied significantly with period when using sinusoidal curve fitting methods (e.g., iteratively re-weighted least squares or IRLS), but not when using the transit time distribution (TTD)-based method. Therefore, F yw estimates from TTD-based methods may be particularly useful for intercomparison of dynamic flow behavior between catchments. However, the utility of 3 H to determine F yw in deeper groundwater was limited due to both data quality and inconsistent seasonal cyclicity of the precipitation 3 H time series data. Although a Gamma-type TTD was appropriate to characterize deep groundwater, there were large uncertainties in the estimated Gamma TTD shape parameter arising from the short record length of 3 H in deep groundwater. This work demonstrates how co-application of multiple metrics and tracers can yield a more complete understanding of the dynamic and slow flow paths and observable deep groundwater storage volumes that contribute to streamflow in mountain headwater catchments.more » « less
-
Abstract Soil CO2efflux (
F soil ) is commonly considered equal to soil CO2production (R soil ), and both terms are used interchangeably. However, a non-negligible fraction ofR soil can be consumed in the subsurface due to a host of disparate, yet simultaneous processes. The ratio between CO2efflux/O2influx, known as the apparent respiratory quotient (ARQ), enables new insights into CO2losses fromR soil not previously captured byF soil . We present the first study using continuous ARQ estimates to evaluate annual CO2losses of carbon produced fromR soil . We found that up to 1/3 ofR soil was emitted directly to the atmosphere, whereas 2/3 ofR soil was removed by subsurface processes. These subsurface losses are attributable to dissolution in water, biological activities and chemical reactions. Having better estimates ofR soil is key to understanding the true influence of ecosystem production onR soil , as well as the role of soil CO2production in other connected processes within the critical zone. -
Hybrid-poplar tree plantations provide a source for biofuel and biomass, but they also increase forest isoprene emissions. The consequences of increased isoprene emissions include higher rates of tropospheric ozone production, increases in the lifetime of methane, and increases in atmospheric aerosol production, all of which affect the global energy budget and/or lead to the degradation of air quality. Using RNA interference (RNAi) to suppress isoprene emission, we show that this trait, which is thought to be required for the tolerance of abiotic stress, is not required for high rates of photosynthesis and woody biomass production in the agroforest plantation environment, even in areas with high levels of climatic stress. Biomass production over 4 y in plantations in Arizona and Oregon was similar among genetic lines that emitted or did not emit significant amounts of isoprene. Lines that had substantially reduced isoprene emission rates also showed decreases in flavonol pigments, which reduce oxidative damage during extremes of abiotic stress, a pattern that would be expected to amplify metabolic dysfunction in the absence of isoprene production in stress-prone climate regimes. However, compensatory increases in the expression of other proteomic components, especially those associated with the production of protective compounds, such as carotenoids and terpenoids, and the fact that most biomass is produced prior to the hottest and driest part of the growing season explain the observed pattern of high biomass production with low isoprene emission. Our results show that it is possible to reduce the deleterious influences of isoprene on the atmosphere, while sustaining woody biomass production in temperate agroforest plantations.
-
Abstract Predicting fluid biogeochemistry in the vadose zone is difficult because of time‐dependent variation in multiple controlling factors, such as temperature, moisture, and biological activity. Furthermore, soils are multicomponent, heterogeneous porous media where manifold reactions may be affecting solution chemistry. We postulated that ecosystem‐scale processes, such as carbon fixation and ecohydrologic partitioning, control subsurface biogeochemical reactions, including mineral weathering. To test this hypothesis, we applied a novel “instrumented pedon” research approach. Analysis of the data streams demonstrates the interactions between pulsed wetting events and biogeochemical processes in the soil profile, and along groundwater flow paths. Rapid wetting front propagation into dry soil resulted in a pulsed increase in CO2partial pressure in deeper soil layers, whereas wetting front propagation into a premoistened soil profile showed the opposite effect. The apparent respiratory quotient (ARQ), calculated from CO2and O2fluxes, deviated from expected oxidative ratios particularly during soil wetting events. These deviations were correlated in time with pore water geochemical responses, revealing that a fraction of the respired CO2was consumed locally in pulsed silicate weathering events that accompanied wetting‐front propagation. However, most of this CO2was dissolved in the soil pore water and transported downgradient, and along the soil‐bedrock interface, where a portion of it was further consumed in silicate weathering reactions, and another portion was degassed to the atmosphere. These results highlight the tight coupling that exists between physical, biological, and chemical processes, on event time scales, during incremental co‐evolution of the critical zone, particularly in water‐limited systems.
-
Abstract High‐elevation montane forests are disproportionately important to carbon sequestration in semiarid climates where low elevations are dry and characterized by low carbon density ecosystems. However, these ecosystems are increasingly threatened by climate change with seasonal implications for photosynthesis and forest growth. As a result, we leveraged eddy covariance data from six evergreen conifer forest sites in the semiarid western United States to extrapolate the status of carbon sequestration within a framework of projected warming and drying. At colder locations, the seasonal evolution of gross primary productivity (GPP) was characterized by a single broad maximum during the summer that corresponded to snow melt‐derived moisture and a transition from winter dormancy to spring activity. Conversely, winter dormancy was transient at warmer locations, and GPP was responsive to both winter and summer precipitation such that two distinct GPP maxima were separated by a period of foresummer drought. This resulted in a predictable sequence of primary limiting factors to GPP beginning with air temperature in winter and proceeding to moisture and leaf area during the summer. Due to counteracting winter (positive) and summer (negative) GPP responses to warming, leaf area index and moisture availability were the best predictors of annual GPP differences across sites. Overall, mean annual GPP was greatest at the warmest site due to persistent vegetation photosynthetic activity throughout the winter. These results indicate that the trajectory of this region's carbon sequestration will be sensitive to reduced or delayed summer precipitation, especially if coupled to snow drought and earlier soil moisture recession, but summer precipitation changes remain highly uncertain. Given the demonstrated potential for seasonally offsetting responses to warming, we project that decadal semiarid montane forest carbon sequestration will remain relatively stable in the absence of severe disturbance.
-
Abstract At the seasonal time scale, daily photochemical reflectance index (PRI) measurements track changes in photoprotective pigment pools as plants respond to seasonally variable environmental conditions. As such, remotely sensed PRI products present opportunities to study seasonal processes in evergreen conifer forests, where complex vegetation dynamics are difficult to capture due to small annual changes in chlorophyll content or leaf structure. Because PRI is tied explicitly to short‐ and long‐term changes in photoprotective pigments that are responsible for regulating stress, we hypothesize that PRI by extension could serve as a proxy for stomatal response to seasonally changing hydroclimate, assuming plant functional responses to stress covary in space and time. To test this, we characterized PRI in a semiarid, montane mixed conifer forest in the Madrean sky islands of Arizona, USA, during the monsoon growing season subject to precipitation pulse dynamics. To determine the sensitivity of PRI to ecohydrologic variability and associated changes in gross primary productivity (GPP), canopy spectral measurements were coupled with eddy covariance CO2flux and sap flow measurements. Seasonally, there was a significant relationship between PRI and sap flow velocity (R2 = 0.56), and multiple linear regression analysis demonstrated a PRI response to dynamic water and energy limitations in this system. We conclude that PRI has potential to serve as a proxy for forest functional response to seasonal ecohydrologic forcing. The coordination between photoprotective pigments and seasonal stomatal regulation demonstrated here could aid characterization of vegetation response to future changes in hydroclimate at increasing spatial scales.