Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Given a system of linear equations in an ‐vector of 0–1 variables, we compute the expectation of , where is a vector of independent Bernoulli random variables and are constants. The algorithm runs in quasi‐polynomial time under some sparseness condition on the matrix of the system. The result is based on the absence of the zeros of the analytic continuation of the expectation for complex probabilities, which can also be interpreted as the absence of a phase transition in the Ising model with a sufficiently strong external field. We discuss applications to perfect matchings in hypergraphs and randomized rounding in discrete optimization.more » « less
- 
            Abstract We consider the problem of computing the partition function $$\sum _x e^{f(x)}$$ , where $$f: \{-1, 1\}^n \longrightarrow {\mathbb R}$$ is a quadratic or cubic polynomial on the Boolean cube $$\{-1, 1\}^n$$ . In the case of a quadratic polynomial f , we show that the partition function can be approximated within relative error $$0 < \epsilon < 1$$ in quasi-polynomial $$n^{O(\ln n - \ln \epsilon )}$$ time if the Lipschitz constant of the non-linear part of f with respect to the $$\ell ^1$$ metric on the Boolean cube does not exceed $$1-\delta $$ , for any $$\delta>0$$ , fixed in advance. For a cubic polynomial f , we get the same result under a somewhat stronger condition. We apply the method of polynomial interpolation, for which we prove that $$\sum _x e^{\tilde {f}(x)} \ne 0$$ for complex-valued polynomials $$\tilde {f}$$ in a neighborhood of a real-valued f satisfying the above mentioned conditions. The bounds are asymptotically optimal. Results on the zero-free region are interpreted as the absence of a phase transition in the Lee–Yang sense in the corresponding Ising model. The novel feature of the bounds is that they control the total interaction of each vertex but not every single interaction of sets of vertices.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available