skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bassham, Diane_C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Weed control has relied on the use of organic and inorganic molecules that interfere with druggable targets, especially enzymes, for almost a century. This approach, although effective, has resulted in multiple cases of herbicide resistance. Furthermore, the rate of discovery of new druggable targets that are selective and with favorable environmental profiles has slowed down, highlighting the need for innovative control tools. The arrival of the biotechnology and genomics era gave hope to many that all sorts of new control tools would be developed. However, the reality is that most efforts have been limited to the development of transgenic crops with resistance to a few existing herbicides, which in fact is just another form of selectivity. Proteolysis‐targeting chimera (PROTAC) is a new technology developed to treat human diseases but that has potential for multiple applications in agriculture. This technology uses a small bait molecule linked to an E3 ligand. The 3‐dimensional structure of the bait favors physical interaction with a binding site in the target protein in a manner that allows E3 recruitment, ubiquitination and then proteasome‐mediated degradation. This system makes it possible to circumvent the need to find druggable targets because it can degrade structural proteins, transporters, transcription factors, and enzymes without the need to interact with the active site. PROTAC can help control herbicide‐resistant weeds as well as expand the number of biochemical targets that can be used for weed control. In the present article, we provide an overview of how PROTAC works and describe the possible applications for weed control as well as the challenges that this technology might face during development and implementation for field uses. © 2023 The Authors.Pest Management Sciencepublished by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. 
    more » « less
  2. Abstract Proteolysis, including post-translational proteolytic processing as well as protein degradation and amino acid recycling, is an essential component of the growth and development of living organisms. In this article, experts in plant proteolysis pose and discuss compelling open questions in their areas of research. Topics covered include the role of proteolysis in the cell cycle, DNA damage response, mitochondrial function, the generation of N-terminal signals (degrons) that mark many proteins for degradation (N-terminal acetylation, the Arg/N-degron pathway, and the chloroplast N-degron pathway), developmental and metabolic signaling (photomorphogenesis, abscisic acid and strigolactone signaling, sugar metabolism, and postharvest regulation), plant responses to environmental signals (endoplasmic-reticulum-associated degradation, chloroplast-associated degradation, drought tolerance, and the growth-defense trade-off), and the functional diversification of peptidases. We hope these thought-provoking discussions help to stimulate further research. 
    more » « less