skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Basu, Deborsi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. 5G and beyond communication networks require satisfying very low latency standards, high reliability, high- speed user connectivity, more security, improved capacity and better service demands. Augmenting such a wide range of KPIs (Key Performance Indicators) needs a smart, intelligent and programmable solution for TSPs (Telecommunication Service Providers). Resource availability and quality sustainability are challenging parameters in a heterogeneous 5G environment. Programmable Dynamic Network Slicing (PDNS) is a key technology enabling parameter that can allow multiple tenants to bring their versatile applications simultaneously over shared physical infrastructure. Latest emerging technologies like virtualized Software- Defined Networks (vSDN) and Artificial Intelligence (AI) play a pivotal supporting role in solving the above-mentioned constraints. Using the PDNS framework, we have proposed a novel slice backup algorithm leveraging Deep Learning (DL) neural network to orchestrate network latency and load efficiently. Our model has been trained using the available KPIs and incoming traffic is analyzed. The proposed solution performs stable load balancing between shared slices even if certain extreme conditions (slice unavailability) through intelligent resource allocation. The framework withstands service outage and always select the most suitable slice as a backup. Our results show latency-aware resource distribution for better network stability. 
    more » « less