skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Basu_Thakur, R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Background Imaging of Cosmic Extragalactic Polarization (BICEP)/Keck (BK) collaboration is currently leading the quest for the highest-sensitivity measurements of the polarized cosmic microwave background (CMB) anisotropies on a degree scale with a series of cryogenic telescopes, of which BICEP Array (BA) is the latest Stage-3 upgrade with a total of ∼ 32,000 detectors. The instrument comprises 4 receivers spanning 30-270 GHz, with the low-frequency 30/40 GHz deployed to the South Pole Station in late 2019. The full complement of receivers is forecast to set the most stringent constraints on the tensor-to-scalar ratio r. Building on these advances, the overarching small-aperture telescope concept is already being used as the reference for further Stage-4 experiment design. This paper describes the development of the BICEP Array 150 GHz detector module and its fabrication requirements, with highlights on the high-density time division multiplexing (TDM) design of the cryogenic circuit boards. The low-impedance wiring required between the detectors and the first stage of superconducting quantum interference device amplifiers is crucial to maintaining a stable bias current on the detectors. A novel multi-layer FR4 Printed Circuit Board with superconducting traces, capable of reading out up to 648 detectors, is detailed along with its validation tests. An ultra-high-density TDM detector module concept we developed for a CMB-S4-like experiment that allows up to 1920 detectors to be read out is also presented. TDM has been chosen as the detector readout technology for the Cosmic Microwave Background Stage-4 (CMB-S4) experiment based on its proven low-noise performance, predictable costs, and overall maturity of the architecture. The heritage for TDM is rooted in mm- and sub-mm-wave experiments dating back 20 years and has since evolved to support a multiplexing factor of 64x in Stage-3 experiments. 
    more » « less
  2. We present two prescriptions for broadband (), millimeter-wave antireflection coatings for cryogenic, sintered polycrystalline aluminum oxide optics: one for large-format (700 mm diameter) planar and plano–convex elements, the other for densely packed arrays of quasi-optical elements—in our case, 5 mm diameter half-spheres (called “lenslets”). The coatings comprise three layers of commercially available, polytetrafluoroethylene-based, dielectric sheet material. The lenslet coating is molded to fit the 150 mm diameter arrays directly, while the large-diameter lenses are coated using a tiled approach. We review the fabrication processes for both prescriptions, then discuss laboratory measurements of their transmittance and reflectance. In addition, we present the inferred refractive indices and loss tangents for the coating materials and the aluminum oxide substrate. We find that at 150 GHz and 300 K the large-format coating sample achievestransmittance, and the lenslet coating sample achievestransmittance. 
    more » « less