skip to main content

Search for: All records

Creators/Authors contains: "Baxter, Devontae C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.


    We model satellite quenching at z ∼ 1 by combining 14 massive (1013.8 < Mhalo/M⊙ < 1015) clusters at 0.8 < z < 1.3 from the GOGREEN and GCLASS surveys with accretion histories of 56 redshift-matched analogues from the IllustrisTNG simulation. Our fiducial model, which is parametrized by the satellite quenching time-scale (τquench), accounts for quenching in our simulated satellite population both at the time of infall by using the observed coeval field quenched fraction and after infall by tuning τquench to reproduce the observed satellite quenched fraction versus stellar mass trend. This model successfully reproduces the observed satellite quenched fraction as a function of stellar mass (by construction), projected cluster-centric radius, and redshift and is consistent with the observed field and cluster stellar mass functions at z ∼ 1. We find that the satellite quenching time-scale is mass dependent, in conflict with some previous studies at low and intermediate redshift. Over the stellar mass range probed (M⋆ > 1010 M⊙), we find that the satellite quenching time-scale decreases with increasing satellite stellar mass from ∼1.6 Gyr at 1010 M⊙ to ∼0.6−1 Gyr at 1011 M⊙ and is roughly consistent with the total cold gas (HI + H2) depletion time-scales at intermediate z, suggesting that starvationmore »may be the dominant driver of environmental quenching at z < 2. Finally, while environmental mechanisms are relatively efficient at quenching massive satellites, we find that the majority ($\sim 65{\!-\!}80{{\ \rm per\ cent}}$) of ultra-massive satellites (M⋆ > 1011 M⊙) are quenched prior to infall.

    « less
  2. ABSTRACT Observations suggest that satellite quenching plays a major role in the build-up of passive, low-mass galaxies at late cosmic times. Studies of low-mass satellites, however, are limited by the ability to robustly characterize the local environment and star formation activity of faint systems. In an effort to overcome the limitations of existing data sets, we utilize deep photometry in Stripe 82 of the Sloan Digital Sky Survey, in conjunction with a neural network classification scheme, to study the suppression of star formation in low-mass satellite galaxies in the local Universe. Using a statistically driven approach, we are able to push beyond the limits of existing spectroscopic data sets, measuring the satellite quenched fraction down to satellite stellar masses of ∼107 M⊙ in group environments (Mhalo = 1013−14 h−1 M⊙). At high satellite stellar masses (≳1010 M⊙), our analysis successfully reproduces existing measurements of the quenched fraction based on spectroscopic samples. Pushing to lower masses, we find that the fraction of passive satellites increases, potentially signalling a change in the dominant quenching mechanism at M⋆ ∼ 109 M⊙. Similar to the results of previous studies of the Local Group, this increase in the quenched fraction at low satellite masses may correspond to an increase inmore »the efficacy of ram-pressure stripping as a quenching mechanism in groups.« less