skip to main content

Title: A machine learning approach to measuring the quenched fraction of low-mass satellites beyond the Local Group
ABSTRACT Observations suggest that satellite quenching plays a major role in the build-up of passive, low-mass galaxies at late cosmic times. Studies of low-mass satellites, however, are limited by the ability to robustly characterize the local environment and star formation activity of faint systems. In an effort to overcome the limitations of existing data sets, we utilize deep photometry in Stripe 82 of the Sloan Digital Sky Survey, in conjunction with a neural network classification scheme, to study the suppression of star formation in low-mass satellite galaxies in the local Universe. Using a statistically driven approach, we are able to push beyond the limits of existing spectroscopic data sets, measuring the satellite quenched fraction down to satellite stellar masses of ∼107 M⊙ in group environments (Mhalo = 1013−14 h−1 M⊙). At high satellite stellar masses (≳1010 M⊙), our analysis successfully reproduces existing measurements of the quenched fraction based on spectroscopic samples. Pushing to lower masses, we find that the fraction of passive satellites increases, potentially signalling a change in the dominant quenching mechanism at M⋆ ∼ 109 M⊙. Similar to the results of previous studies of the Local Group, this increase in the quenched fraction at low satellite masses may correspond to an increase in more » the efficacy of ram-pressure stripping as a quenching mechanism in groups. « less
Authors:
; ;
Award ID(s):
1815475
Publication Date:
NSF-PAR ID:
10326889
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
503
Issue:
2
Page Range or eLocation-ID:
1636 to 1645
ISSN:
0035-8711
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The star formation and gas content of satellite galaxies around the Milky Way (MW) and Andromeda (M31) are depleted relative to more isolated galaxies in the Local Group (LG) at fixed stellar mass. We explore the environmental regulation of gas content and quenching of star formation in z = 0 galaxies at $M_{*}=10^{5\!-\!10}\, \rm {M}_{\odot }$ around 14 MW-mass hosts from the Feedback In Realistic Environments 2 (FIRE-2) simulations. Lower mass satellites ($M_{*}\lesssim 10^7\, \rm {M}_{\odot }$) are mostly quiescent and higher mass satellites ($M_{*}\gtrsim 10^8\, \rm {M}_{\odot }$) are mostly star forming, with intermediate-mass satellites ($M_{*}\approx 10^{7\!-\!8}\, \rm {M}_{\odotmore »}$) split roughly equally between quiescent and star forming. Hosts with more gas in their circumgalactic medium have a higher quiescent fraction of massive satellites ($M_{*}=10^{8\!-\!9}\, \rm {M}_{\odot }$). We find no significant dependence on isolated versus paired (LG-like) host environments, and the quiescent fractions of satellites around MW-mass and Large Magellanic Cloud (LMC)-mass hosts from the FIRE-2 simulations are remarkably similar. Environmental effects that lead to quenching can also occur as pre-processing in low-mass groups prior to MW infall. Lower mass satellites typically quenched before MW infall as central galaxies or rapidly during infall into a low-mass group or a MW-mass galaxy. Most intermediate- to high-mass quiescent satellites have experienced ≥1–2 pericentre passages (≈2.5–5 Gyr) within a MW-mass halo. Most galaxies with $M_{*}\gtrsim 10^{6.5}\, \rm {M}_{\odot }$ did not quench before falling into a host, indicating a possible upper mass limit for isolated quenching. The simulations reproduce the average trend in the LG quiescent fraction across the full range of satellite stellar masses. Though the simulations are consistent with the Satellites Around Galactic Analogs (SAGA) survey’s quiescent fraction at $M_{*}\gtrsim 10^8\, \rm {M}_{\odot }$, they do not generally reproduce SAGA’s turnover at lower masses.« less
  2. Abstract We use ALMA observations of CO(2–1) in 13 massive ( M * ≳ 10 11 M ⊙ ) poststarburst galaxies at z ∼ 0.6 to constrain the molecular gas content in galaxies shortly after they quench their major star-forming episode. The poststarburst galaxies in this study are selected from the Sloan Digital Sky Survey spectroscopic samples (Data Release 14) based on their spectral shapes, as part of the Studying QUenching at Intermediate-z Galaxies: Gas, angu L → ar momentum, and Evolution ( SQuIGG L ⃗ E ) program. Early results showed that two poststarburst galaxies host large H 2more »reservoirs despite their low inferred star formation rates (SFRs). Here we expand this analysis to a larger statistical sample of 13 galaxies. Six of the primary targets (45%) are detected, with M H 2 ≳ 10 9 M ⊙ . Given their high stellar masses, this mass limit corresponds to an average gas fraction of 〈 f H 2 ≡ M H 2 / M * 〉 ∼ 7 % or ∼14% using lower stellar masses estimates derived from analytic, exponentially declining star formation histories. The gas fraction correlates with the D n 4000 spectral index, suggesting that the cold gas reservoirs decrease with time since burst, as found in local K+A galaxies. Star formation histories derived from flexible stellar population synthesis modeling support this empirical finding: galaxies that quenched ≲150 Myr prior to observation host detectable CO(2–1) emission, while older poststarburst galaxies are undetected. The large H 2 reservoirs and low SFRs in the sample imply that the quenching of star formation precedes the disappearance of the cold gas reservoirs. However, within the following 100–200 Myr, the SQuIGG L ⃗ E galaxies require the additional and efficient heating or removal of cold gas to bring their low SFRs in line with standard H 2 scaling relations.« less
  3. ABSTRACT Characterizing the predicted environments of dwarf galaxies like the Large Magellanic Cloud (LMC) is becoming increasingly important as next-generation surveys push sensitivity limits into this low-mass regime at cosmological distances. We study the environmental effects of LMC-mass haloes (M200m ∼ 1011 M⊙) on their populations of satellites (M⋆ ≥ 104 M⊙) using a suite of zoom-in simulations from the Feedback In Realistic Environments (FIRE) project. Our simulations predict significant hot coronas with T ∼ 105 K and Mgas ∼ 109.5 M⊙. We identify signatures of environmental quenching in dwarf satellite galaxies, particularly for satellites with intermediate mass (M⋆ = 106–107more »M⊙). The gas content of such objects indicates ram pressure as the likely quenching mechanism, sometimes aided by star formation feedback. Satellites of LMC-mass hosts replicate the stellar mass dependence of the quiescent fraction found in satellites of Milky Way-mass hosts (i.e. that the quiescent fraction increases as stellar mass decreases). Satellites of LMC-mass hosts have a wider variety of quenching times when compared to the strongly bimodal distribution of quenching times of nearby centrals. Finally, we identify significant tidal stellar structures around four of our six LMC analogues, suggesting that stellar streams may be common. These tidal features originated from satellites on close orbits, extend to ∼80 kpc from the central galaxy, and contain ∼106–107 M⊙ of stars.« less
  4. ABSTRACT We study star formation histories (SFHs) of 500 dwarf galaxies (stellar mass $M_\ast =10^5\!-\!10^9\, \rm {M}_\odot$) from FIRE-2 cosmological zoom-in simulations. We compare dwarfs around individual Milky Way (MW)-mass galaxies, dwarfs in Local Group (LG)-like environments, and true field (i.e. isolated) dwarf galaxies. We reproduce observed trends wherein higher mass dwarfs quench later (if at all), regardless of environment. We also identify differences between the environments, both in terms of ‘satellite versus central’ and ‘LG versus individual MW versus isolated dwarf central.’ Around the individual MW-mass hosts, we recover the result expected from environmental quenching: central galaxies in themore »‘near field’ have more extended SFHs than their satellite counterparts, with the former more closely resemble isolated (true field) dwarfs (though near-field centrals are still somewhat earlier forming). However, this difference is muted in the LG-like environments, where both near-field centrals and satellites have similar SFHs, which resemble satellites of single MW-mass hosts. This distinction is strongest for M* = 106–$10^7\, \rm {M}_\odot$ but exists at other masses. Our results suggest that the paired halo nature of the LG may regulate star formation in dwarf galaxies even beyond the virial radii of the MW and Andromeda. Caution is needed when comparing zoom-in simulations targeting isolated dwarf galaxies against observed dwarf galaxies in the LG.« less
  5. ABSTRACT Galaxy internal structure growth has long been accused of inhibiting star formation in disc galaxies. We investigate the potential physical connection between the growth of dispersion-supported stellar structures (e.g. classical bulges) and the position of galaxies on the star-forming main sequence at z ∼ 0. Combining the might of the SAMI and MaNGA galaxy surveys, we measure the λRe spin parameter for 3289 galaxies over $9.5 \lt \log M_{\star } [\rm {M}_{\odot }] \lt 12$. At all stellar masses, galaxies at the locus of the main sequence possess λRe values indicative of intrinsically flattened discs. However, above $\log M_{\starmore »}[\rm {M}_{\odot }]\sim 10.5$ where the main sequence starts bending, we find tantalizing evidence for an increase in the number of galaxies with dispersion-supported structures, perhaps suggesting a connection between bulges and the bending of the main sequence. Moving above the main sequence, we see no evidence of any change in the typical spin parameter in galaxies once gravitationally interacting systems are excluded from the sample. Similarly, up to 1 dex below the main sequence, λRe remains roughly constant and only at very high stellar masses ($\log M_{\star }[\rm {M}_{\odot }]\gt 11$), do we see a rapid decrease in λRe once galaxies decline in star formation activity. If this trend is confirmed, it would be indicative of different quenching mechanisms acting on high- and low-mass galaxies. The results suggest that whilst a population of galaxies possessing some dispersion-supported structure is already present on the star-forming main sequence, further growth would be required after the galaxy has quenched to match the kinematic properties observed in passive galaxies at z ∼ 0.« less