- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Becklund, L. Ellie (2)
-
Carey, S. James (2)
-
Fabre, Paige P. (2)
-
Schenk, John J. (2)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Cetyltrimethylammonium bromide (CTAB)–based methods are widely used to isolate DNA from plant tissues, but the unique chemical composition of secondary metabolites among plant species has necessitated optimization. Research articles often cite a “modified” CTAB protocol without explicitly stating how the protocol had been altered, creating non‐reproducible studies. Furthermore, the various modifications that have been applied to the CTAB protocol have not been rigorously reviewed and doing so could reveal optimization strategies across study systems. We surveyed the literature for modified CTAB protocols used for the isolation of plant DNA. We found that every stage of the CTAB protocol has been modified, and we summarized those modifications to provide recommendations for extraction optimization. Future genomic studies will rely on optimized CTAB protocols. Our review of the modifications that have been used, as well as the protocols we provide here, could better standardize DNA extractions, allowing for repeatable and transparent studies.more » « less
-
Carey, S. James; Becklund, L. Ellie; Fabre, Paige P.; Schenk, John J. (, Applications in Plant Sciences)Abstract Premise The use of cetyltrimethylammonium bromide (CTAB) is an effective and inexpensive method of extracting DNA from plants. The CTAB protocol is frequently modified to optimize DNA extractions, but experimental approaches rarely perturb a single variable at a time to systematically infer their effect on DNA quantity and quality. Methods and Results We investigated how chemical additives, incubation temperature, and lysis duration affected DNA quantity and quality. Altering those parameters influenced DNA concentrations and fragment lengths, but only extractant purity was significantly affected. CTAB and CTAB plus polyvinylpyrrolidone buffers produced the highest DNA quality and quantity. Extractions from silica gel–preserved tissues had significantly higher DNA yield, longer DNA fragments, and purer extractants compared to herbarium‐preserved tissues. Conclusions We recommend DNA extractions of silica gel–preserved tissues that include a shorter and cooler lysis step, which results in purer extractions compared to a longer and hotter lysis step, while preventing fragmentation and reducing time.more » « less