Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Thanks to its exceptional near-infrared photometry, JWST can effectively contribute to the discovery, characterisation, and understanding of multiple stellar populations in globular clusters, especially at low masses where theHubbleSpace Telescope (HST) faces limitations. This paper continues the efforts of the JWST GO-1979 programme in exploring the faintest members of the globular cluster NGC 6397. In this work, we show that the combination of HST and JWST data allows us to identify two groups of MS stars: MSa, the first-generation group, and MSb, the second-generation group. We measured the ratio between the two groups and combined it with measurements from the literature focused on more central fields and more massive stars compared to our study. Our findings suggest that the MSa and MSb stars are present in a ≈30−70 ratio regardless of the distance from the centre of the cluster and the mass of the stars used so far. However, considering the limited areal coverage of our study, a more comprehensive spatial analysis is necessary to definitively confirm complete spatial mixing.more » « less
-
null (Ed.)ABSTRACT In the fourth paper of this series, we present – and publicly release – the state-of-the-art catalogue and atlases for the two remaining parallel fields observed with the Hubble Space Telescope for the large programme on ω Centauri. These two fields are located at ∼12 arcmin from the centre of the globular cluster (in the west and south-west directions) and were imaged in filters from the ultraviolet to the infrared. Both fields were observed at two epochs separated by about 2 yr that were used to derive proper motions and to compute membership probabilities.more » « less
-
Context. Gravitational waves from black-hole (BH) merging events have revealed a population of extra-galactic BHs residing in short-period binaries with masses that are higher than expected based on most stellar evolution models - and also higher than known stellar-origin black holes in our Galaxy. It has been proposed that those high-mass BHs are the remnants of massive metal-poor stars. Aims: Gaia astrometry is expected to uncover many Galactic wide-binary systems containing dormant BHs, which may not have been detected before. The study of this population will provide new information on the BH-mass distribution in binaries and shed light on their formation mechanisms and progenitors. Methods: As part of the validation efforts in preparation for the fourth Gaia data release (DR4), we analysed the preliminary astrometric binary solutions, obtained by the Gaia Non-Single Star pipeline, to verify their significance and to minimise false-detection rates in high-mass-function orbital solutions. Results: The astrometric binary solution of one source, Gaia BH3, implies the presence of a 32.70 ± 0.82 M⊙ BH in a binary system with a period of 11.6 yr. Gaia radial velocities independently validate the astrometric orbit. Broad-band photometric and spectroscopic data show that the visible component is an old, very metal-poor giant of the Galactic halo, at a distance of 590 pc. Conclusions: The BH in the Gaia BH3 system is more massive than any other Galactic stellar-origin BH known thus far. The low metallicity of the star companion supports the scenario that metal-poor massive stars are progenitors of the high-mass BHs detected by gravitational-wave telescopes. The Galactic orbit of the system and its metallicity indicate that it might belong to the Sequoia halo substructure. Alternatively, and more plausibly, it could belong to the ED-2 stream, which likely originated from a globular cluster that had been disrupted by the Milky Way. Full Table B.1 and Table B.2 with Gaia epoch data are available at the CDS via anonymous ftp to cdsarc.cds.unistra.fr (ftp://130.79.128.5) or via https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/686/L2more » « less
An official website of the United States government

Full Text Available