skip to main content


Search for: All records

Creators/Authors contains: "Behfarnia, Ali"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The unmanned aerial vehicle (UAV) is one of the technological breakthroughs that supports a variety of services, including communications. UAVs can also enhance the security of wireless networks. This paper defines the problem of eavesdropping on the link between the ground user and the UAV, which serves as an aerial base station (ABS). The reinforcement learning algorithms Q-learning and deep Q-network (DQN) are proposed for optimizing the position of the ABS and the transmission power to enhance the data rate of the ground user. This increases the secrecy capacity without the system knowing the location of the eavesdropper. Simulation results show fast convergence and the highest secrecy capacity of the proposed DQN compared to Q-learning and two baseline approaches. 
    more » « less