Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Undergraduate research is a common method for students to gain experience in fields related to their major during their time in college. While involvement in research has many possible outcomes for undergraduates, the study of its effect on engineering, leadership, and engineering leadership identity development is underdeveloped and inconclusive. To contribute to this area of study the experiences of four undergraduate engineering students who were involved in research were examined through combined collective case study and autoethnographic methods. The research the students participated in centered on understanding the development of the identities of interest in engineering students more broadly, giving the four students repeated opportunities to engage with the subject. This combination of involvement in research and exposure to engineering, leadership, and engineering leadership concepts was found to have mixed results. The impact on the student's own identity development was inconsistent, ranging from positive to negligible to negative. It is hypothesized that this discrepancy can be attributed to diversity of individual experience both before and during involvement in research.more » « less
-
In order to lead the social process required to solve society’s grandest challenges and ensure that the capabilities of an expanded engineering workforce are successfully harnessed, new engineers must be more than just technical experts, they must also be technical leaders. Thankfully, greater numbers of engineering educators are recognizing this need and are consequently establishing engineering leadership certificates, minors, and even full degree programs through centers at universities throughout the country. However, for these programs to reach their full potential, engineering educators must be successful in integrating leadership into the very identity of engineers. This study seeks to better understand the relationship between engineering identity and leadership, so tools can be developed that enable engineering educators to more effectively integrate leadership into an engineering identity. This paper explores this relationship using a national sample of 918 engineering students who participated in the 2013 College Senior Survey (CSS). The CSS is administered by the Higher Education Research Institute (HERI) at UCLA to college students at the end of their fourth year of college; data from the CSS are then matched to students’ prior responses on the 2009 Freshman Survey (TFS), which was administered when they first started college, to create a longitudinal sample. Using a leadership construct developed by HERI as the outcome variable, this work utilizes Hierarchical Linear Modelling (HLM) to examine the impact of engineering identity and a host of other factors shown to be important in college student development on leadership. HLM is especially appropriate since individual student cases are grouped by schools, and predictor variables include both student-level and institution-level variables. The leadership construct, referred to as leadership self-efficacy in this work, includes self-rated growth in leadership ability, self-rating of leadership ability relative to one’s peers, participation in a leadership role and/or leadership training, and perceived effectiveness leading an organization. The primary independent variable of interest was a factor measuring engineering identity comprised of items available on both the TFS and CSS instruments. Including this measure of engineering identity from two different time periods in the model provides the relationship between engineering identity in the fourth year and leadership self-efficacy, controlling for engineering identity in the first year as a pretest. Statistically significant results were found across each of the areas tested, including the fourth-year engineering identity factor as well as several collegiate experiences, pre-college experiences, major, and institutional variables. Taken together, these results present a nuanced picture of what matters to predicting leadership outcomes for undergraduate engineering students. For example, while engineering identity is a significant positive predictor of the leadership construct, computer engineers score lower than mechanical engineers on leadership, while interacting with faculty appears to enhance leadership self-efficacy.more » « less
-
National reports have indicated colleges and universities need to increase the number of students graduating with engineering degrees to meet anticipated job openings in the near-term future. Fields like engineering are critical to the nation’s economic strength and competitiveness globally, and engineering expertise is needed to solve society’s most pressing problems. Yet only about 40% of students who aspire to an engineering degree follow the path to complete one, and an even smaller percentage of those students continue into an engineering career. Underlying students’ motivation to transform their engineering interest into an engineering career is the psychological construct of engineering identity. Engineering identity reflects the extent to which a person identifies with being an engineer. Previous research has focused on experiences or interventions that promote engineering identity, and some qualitative work has suggested students who are retained in engineering experience differences in engineering identity, but little research has tested the relationship between retention and engineering identity, especially modeling change in engineering identity over four years of college. The data for this study were taken from the 2013 College Senior Survey (CSS), administered to students at the end of their fourth year of college by the Cooperative Institutional Research Program (CIRP) at the Higher Education Research Institute at UCLA. Students’ responses to CSS items were then matched to their responses to the Freshman Survey (TFS), also administered by CIRP, at the very beginning of their first year of college. For this study, all students who indicated their intended major as engineering at the start of college constituted the sample, which included 1205 students at 72 universities. The dependent variable is a dichotomous variable indicating if students marked engineering as their major at the end of the fourth year of college. The main independent variable of interest in this study is engineering identity. Engineering identity was computed using exploratory factor analysis with three items from the CSS indicating the importance to students of becoming an authority in their chosen field, being recognized for contributions to their field, and making theoretical contributions to science. Hierarchical generalized linear modeling with robust standard errors was used to model engineering retention as the dependent variable was dichotomous in nature and the data were “nested” in structure (students nested within universities). Control variables include a pretest of engineering identity from the TFS, college experiences known to predict retention and other outcomes in engineering, demographic variables, precollege academic preparation, choice of engineering major, academic and social self-concept at college entry, and institutional characteristics. In the final model, engineering identity was a significant predictor of engineering retention, controlling for all other factors including the engineering identity pretest.more » « less
An official website of the United States government

Full Text Available