Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 8, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
The application of extended reality (XR) technology in education has been growing for the last two decades. XR offers immersive and interactive visualization experiences that can enhance learning by making it engaging. Recent technological advances have led to the availability of high-quality and affordable XR headsets. These advancements have spurred a wave of research focused on designing, implementing, and validating XR educational interventions. Limited literature focuses on the recent trends of XR within science, technology, engineering, and mathematics (STEM) education. Thus, this paper presents an umbrella review that explores the exploding field of XR and its transformative potential in STEM education. Using six online databases, the review zoomed in on 17 out of 1972 papers on XR for STEM education, published between 2020 and 2023, following the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines. The results highlighted the types of XR technology applied (i.e., virtual reality and augmented reality), the specific STEM disciplines involved, the focus of each study reviewed, and the major findings from recent reviews. Overall, the educational benefits of using XR technology in STEM education are apparent: XR boosts student motivation, facilitates learning engagement, and improves skills, for example. However, using XR in education still has challenges that must be addressed, such as the physical discomfort of the learner wearing the XR headset and technical glitches. Besides revealing trends of using XR in STEM education, this umbrella review encourages reflection on current practices and suggests ways to apply XR to STEM education effectively.more » « lessFree, publicly-accessible full text available September 1, 2025
-
We present a novel approach to perform instance segmentation and counting for densely packed self-similar trees using a top-view RGB image sequence. We propose a solution that leverages pixel content, shape, and self-occlusion. First, we perform an initial over-segmentation of the image sequence and aggregate structural characteristics into a contour graph with temporal information incorporated. Second, using a graph convolutional network and its inherent local messaging passing abilities, we merge adjacent tree crown patches into a final set of tree crowns. Per various studies and comparisons, our method is superior to all prior methods and results in high-accuracy instance segmentation and counting despite the trees being tightly packed. Finally, we provide various forest image sequence datasets suitable for subsequent benchmarking and evaluation captured at different altitudes and leaf conditions.more » « less
-
We present a novel approach to perform instance segmentation and counting for densely packed self-similar trees using a top-view RGB image sequence. We propose a solution that leverages pixel content, shape, and self-occlusion. First, we perform an initial over-segmentation of the image sequence and aggregate structural characteristics into a contour graph with temporal information incorporated. Second, using a graph convolutional network and its inherent local messaging passing abilities, we merge adjacent tree crown patches into a final set of tree crowns. Per various studies and comparisons, our method is superior to all prior methods and results in high-accuracy instance segmentation and counting despite the trees being tightly packed. Finally, we provide various forest image sequence datasets suitable for subsequent benchmarking and evaluation captured at different altitudes and leaf conditions.more » « less
-
This paper proposes and evaluates a sketching language to author crowd motion. It focuses on the path, speed, thickness, and density parameters of crowd motion. A sketch-based vocabulary is proposed for each parameter and evaluated in a user study against complex crowd scenes. A sketch recognition pipeline converts the sketches into a crowd simulation. The user study results show that 1) participants at various skill levels and can draw accurate crowd motion through sketching, 2) certain sketch styles lead to a more accurate representation of crowd parameters, and 3) sketching allows to produce complex crowd motions in a few seconds. The results show that some styles although accurate actually are less preferred over less accurate ones.more » « less