- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Berahas, A. S. (2)
-
Berahas, A (1)
-
Cao, L (1)
-
Cao, L. (1)
-
Jahani, M. (1)
-
Richtárik, P. (1)
-
Scheinberg, K (1)
-
Scheinberg, K. (1)
-
Takáč, M. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this paper, we present convergence guarantees for a modified trust-region method designed for minimizing objective functions whose value and gradient and Hessian estimates are computed with noise. These estimates are produced by generic stochastic oracles, which are not assumed to be unbiased or consistent. We introduce these oracles and show that they are more general and have more relaxed assumptions than the stochastic oracles used in prior literature on stochastic trust-region methods. Our method utilizes a relaxed step acceptance criterion and a cautious trust-region radius updating strategy which allows us to derive exponentially decaying tail bounds on the iteration complexity for convergence to points that satisfy approximate first- and second-order optimality conditions. Finally, we present two sets of numerical results. We first explore the tightness of our theoretical results on an example with adversarial zeroth- and first-order oracles. We then investigate the performance of the modified trust-region algorithm on standard noisy derivative-free optimization problems.more » « less
-
Berahas, A. S.; Cao, L.; Scheinberg, K. (, SIAM Journal on Optimization)null (Ed.)
-
Berahas, A. S.; Jahani, M.; Richtárik, P.; Takáč, M. (, Optimization Methods and Software)