 Home
 Search Results
 Page 1 of 1
Search for: All records

Total Resources2
 Resource Type

02000000000
 More
 Availability

20
 Author / Contributor
 Filter by Author / Creator


Bereg Sergey, Haghpanah Mohammadreza (2)

#Tyler Phillips, Kenneth E. (0)

#Willis, Ciara (0)

& AbreuRamos, E. D. (0)

& Abramson, C. I. (0)

& AbreuRamos, E. D. (0)

& Adams, S.G. (0)

& Ahmed, K. (0)

& Ahmed, Khadija. (0)

& Aina, D.K. Jr. (0)

& AkcilOkan, O. (0)

& Akuom, D. (0)

& Aleven, V. (0)

& AndrewsLarson, C. (0)

& Archibald, J. (0)

& Arnett, N. (0)

& Arya, G. (0)

& Attari, S. Z. (0)

& Ayala, O. (0)

& Babbitt, W. (0)

 Filter by Editor


& Spizer, S. M. (0)

& . Spizer, S. (0)

& Ahn, J. (0)

& Bateiha, S. (0)

& Bosch, N. (0)

& Brennan K. (0)

& Brennan, K. (0)

& Chen, B. (0)

& Chen, Bodong (0)

& Drown, S. (0)

& Ferretti, F. (0)

& Higgins, A. (0)

& J. Peters (0)

& Kali, Y. (0)

& RuizArias, P.M. (0)

& S. Spitzer (0)

& Sahin. I. (0)

& Spitzer, S. (0)

& Spitzer, S.M. (0)

(submitted  in Review for IEEE ICASSP2024) (0)


Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

Let P be a set n points in a ddimensional space. Tverberg theorem says that, if n is at least (k − 1)(d + 1), then P can be par titioned into k sets whose convex hulls intersect. Partitions with this property are called Tverberg partitions. A partition has tolerance t if the partition remains a Tverberg partition after removal of any set of t points from P. A tolerant Tverberg partition exists in any dimensions provided that n is sufficiently large. Let N(d,k,t) be the smallest value of n such that tolerant Tverberg partitions exist for any set of n points in R d . Only few exact values of N(d,k,t) are known. In this paper, we study the problem of finding Radon partitions (Tver berg partitions for k = 2) for a given set of points. We develop several algorithms and found new lower bounds for N(d,2,t).more » « less

Bereg Sergey, Haghpanah Mohammadreza ( , LNCS)LetPbe a set of points in general position in the plane. Ahalving lineofPis a line passing through two points ofPand cuttingthe remainingn−2 points in a half (almost half ifnis odd). Generalized configurations of points and their representations using allowablesequences are useful for bounding the number of halving lines.We study a problem of finding generalized configurations of pointsmaximizing the number of halving pseudolines. We develop algorithmsfor optimizing generalized configurations of points using the new notionofpartial allowable sequenceand the problem of computing a partialallowable sequence maximizing the number ofktranspositions. It canbe viewed as a sorting problem using transpositions of adjacent elementsand maximizing the number of transpositions at positionk.We show that this problem can be solved inO(nkn) time for anyk>2, and inO(nk)timefork=1,2. We develop an approach for optimizing allowable sequences. Using this approach, we find new bounds forhalving pseudolines for evenn,n≤100.more » « less